铁磁谐振
- 格式:doc
- 大小:27.00 KB
- 文档页数:2
一、概述铁磁谐振是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等和和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。
电力系统的铁磁谐振可分二大类:一类是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。
二、铁磁谐振的现象1、铁磁谐振的形式及象征1)基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出2)分次谐波:三相对地电压同时升高、低频变动3)高次谐波:三相对地电压同时升高超过线电压2、串联谐振的现象:线电压升高、表计摆动,电压互感器开口三角形电压超过100V三、铁磁谐振产生的原因及其分析:1、铁磁谐振产生的原因:1)、有线路接地、断线、断路器非同期合闸等引起的系统冲击2)、切、合空母线或系统扰动激发谐振3)、系统在某种特殊运行方式下,参数匹配,达到了谐振条件2、串联谐振产生的原因:进行刀闸操作时,断路器隔离开关与母线相连,引发断路器端口电容与母线上互感器耦合满足谐振条件3、电力系统铁磁谐振产生的原因分析电力系统是一个复杂的电力网络,在这个复杂的电力网络中,存在着很多电感及电容元件,尤其在不接地系统中,常常出现铁磁谐振现象,给设备的安全运行带来隐患,下面先从简单的铁磁谐振电路中对铁磁谐振原因进行分析。
1、铁磁谐振:电网中大量非线性电感元件(变压器、电磁式电压互感器)在正常状态下,工作在励磁特性的非饱和区,但在暂态过程中(例如由于接地故障或断路器操作),电感工作状态会跃变到饱和区,电感上电压或其中通过电流突然异常上升,这种现象就是铁磁谐振。
2、谐振原因:中性点接地系统的110、220kV变电站母线上,通常连接电磁式电压互感器,因而PT是一种非线性电感元件,当发生断路器或刀闸操作,导致母线通过断路器的均压电容供电时,暂态过程可诱发铁磁谐振,结果引起PT和母线上电压急剧增加,PT中电流大幅上升,导致PT烧毁,外绝缘闪烙或避雷器爆炸等事故。
3、谐振分类:依据谐振电压的频率,铁磁谐振可分为工频、分频、和高频谐振,在中性点接地系统空母线上发生较多的是工频谐振。
下面就发生单相接地时开口三角电压的计算做一下讲解,首先来了解两个概念,大电流直接接地系统和小电流不接地或间接接地系统。
这涉及到不同的接地系统开口三角PT变比的选择不一样,一次侧发生接地时计算开口三角电压的向量图也不一样。
小接地电流系统:中性点不接地或经过消弧线圈和高阻抗接地的三相系统。
在我国划分标准:X0/X1>4~5的系统属于小电流接地系统。
大接地电流系统:在接地电力系统中性点直接接地的三相系统,一般110kV及以上系统或380/220V的三相四线制系统。
我国标准为:X0/X1≤4~5的系统属于大接地电流系统。
其中:X0为系统零序电抗,X1为系统正序电抗。
铁磁谐振,是电力系统自激振荡的一种形式,是由于变压器、电压互感器等铁磁电感的饱和作用引起的持续性、高幅值谐振过电压现象。
1、谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而趋于平稳;2、铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。
如电源电压暂时升高、系统受到较强烈的电流冲击等;3、铁磁谐振存在自保持现象。
激发因素消失后,铁磁谐振过电压仍然可以继续长期存在;4、铁磁谐振过电压一般不会非常高,过电压幅值主要取决于铁心电感的饱和程度。
铁磁谐振的常用消除办法1)PT一次的中性点加装阻尼电阻。
该方法在已广泛采用,生产定型产品的厂家比较多,在实际运用中都取得了满意的效果。
如西安电瓷厂生产的RXQ系列消谐器,该消谐器串接于PT一次绕组中性点与地之间,内部材料为大容量的非线性碳化硅电阻片及散热片等串联组装于瓷套内而成。
其工作原理为:在低压下消谐器呈高电阻值(可达几百千欧)使谐振在起始阶段不易发展,单相接地时,消谐器上出现千余伏电压,它的非线性电阻下降,使其不影响接地保护的工作。
铁磁谐振的几个特点1)对于铁磁谐振电路,在相同的电源电势作用下回路可能不只一种稳定的工作状态。
电路到底稳定在哪种工作状态要看外界冲击引起的过渡过程的情况。
2)PT的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身也限制了过电压的幅值。
此外回路损耗也使谐振过电压受到阻尼和限制。
当回路电阻大于一定的数值时,就不会出现强烈的铁磁谐振过电压。
3)串联谐振电路来说,产生铁磁谐振过电压的的必要条件是因此铁磁谐振可在很大的范围内发生。
4)维持谐振振荡和抵偿回路电阻损耗的能量均由工频电源供给。
为使工频能量转化为其它谐振频率的能量,其转化过程必须是周期性且有节律的,即…1/2(1,2,3…)倍频率的谐振。
5)铁磁谐振对PT的损坏。
电磁谐振(分频)一般应具备如下三个条件。
①铁磁式电压互感器(PT)的非线性效应是产生铁磁谐振的主要原因。
铁磁谐振是指一种物理现象,主要发生在带有铁磁元件的电路中,是由铁磁元件的非线性电感和铁磁元件的电磁耦合所引起的。
铁磁谐振具体指的是:当外施正弦交流电压加到电路中时,与铁磁元件的矫顽力Hc和磁滞回线宽度Br的乘积成正比,与其他因素无关。
这个现象被称为铁磁谐振。
铁磁谐振在电力系统中,当电压互感器铁芯饱和时可能发生,此时过激和谐波谐振也属于铁磁谐振。
为了避免铁磁谐振现象,通常会采取以下措施:
1.采用不带铁芯的电感元件或采用电容、电阻元件构成无源滤波
器,或者采用同步调相机、晶闸管等元件以构成有源滤波器。
2.尽量减小电压互感器的容量,采用电容补偿的方法使回路中发
生谐振时,因电容与电压互感器电感构成并联关系,可减小电压互感器容抗,从而降低产生铁磁谐振的电压。
3.在电压互感器二次侧开口三角形绕组两端并联阻尼电阻,同时
将开口三角形绕组两端对地并联电容器,以减小正常运行时三角形绕组中的电流。
4.在电压互感器二次侧开口三角形绕组两端并联阻尼电阻,同时
将开口三角形绕组两端对地并联电容器,以减小正常运行时三角形绕组中的电流。
请注意,以上信息仅供参考,如出现具体问题,建议咨询相关领域专家或使用相关领域的专业设备进行解决。
一、概述铁磁谐振就是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等与与系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。
电力系统的铁磁谐振可分二大类:一类就是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类就是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。
二、铁磁谐振的现象1、铁磁谐振的形式及象征1)基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出2)分次谐波:三相对地电压同时升高、低频变动3)高次谐波:三相对地电压同时升高超过线电压2、串联谐振的现象:线电压升高、表计摆动,电压互感器开口三角形电压超过100V三、铁磁谐振产生的原因及其分析:1、铁磁谐振产生的原因:1)、有线路接地、断线、断路器非同期合闸等引起的系统冲击2)、切、合空母线或系统扰动激发谐振3)、系统在某种特殊运行方式下,参数匹配,达到了谐振条件2、串联谐振产生的原因:进行刀闸操作时,断路器隔离开关与母线相连,引发断路器端口电容与母线上互感器耦合满足谐振条件3、电力系统铁磁谐振产生的原因分析电力系统就是一个复杂的电力网络,在这个复杂的电力网络中,存在着很多电感及电容元件,尤其在不接地系统中,常常出现铁磁谐振现象,给设备的安全运行带来隐患,下面先从简单的铁磁谐振电路中对铁磁谐振原因进行分析。
铁磁谐振原理和反铁磁谐振的方法张烨李中琴(新乡学院,河南新乡453003)应甩科技睛蓟铁磁谐振是电力系统中一种内部过电压现象。
钦磁谐振过电压是电力系统中的一种非线幢共据现象发生时,系统出现明显的高于额定工作,grx而持续时间较长的电压升高和电位差升高而造成的,使电网的安全运行遭到严重破坏,人身安全受到严重威胁。
因此,研究铁磁谐振的原理和反铁磁谐强的方法至关重要。
£;c;键阕]铁磁{毒撂;铁磁谐据电压;反皴磁谐振铁磁谐振是一个长期困扰电力系统安全的复杂问题。
它产生的过电压和过电流通常可达到系统设备额定值的数倍而造成损坏,给电力系统安全带来巨大威盼。
在电力系统的振荡回路中,电压互感器是铁心电感元件,如果有某种大扰动或操作,PT(电压互感器)的非线性铁,0嘻先可能饱和,从而与线路和设备的对地电容形成特殊的单相或三相共振国路,激发起持续的、较高幅值的过电压,这就是铁磁谐振过电压。
1铁磁谐振产生的原理铁磁谐振可以是基波谐振、高次谐波谐振、还可以是分次谐波谐振,如图下图f f r-示,,是最简单的电阻R,电容C和铁心电感L的串联电路。
假设在正常运行条件下其初始感抗大于容抗(c-)L>I/06C),电路T-'-R-备线性谐振的条件,但是当铁心电感两端的电压有所升高时,电感线圈中出现涌流,这就有可能使铁,0饱和,其感抗随之减小,一直可以降到∞L=I/∞C,使之满足串联谐振的条件,在电感、电容两端形成过电压,这种现象称为铁磁谐振现象。
因为谐振回路中的电感和电容不是常数,回路没有固定的宇振频率,同样的回路中,既可以产生谐振频率等于电源频率的基波谐振,也能产生高次谐波和分次谐波,因此具有各种谐波振荡的可能性是铁磁谐振的重要特点。
jRL图1铁磁谐振有以下几个主要特点:1)对铁磁谐振电路,在相同的电源电视作用下,回路可能有不兵—种稳定的工作状态,如基波的非诣振状态和谵锈献态。
宅路到底稳定在哪种状态要看外界;中击引起过度过程的情况。
铁磁谐振发生后常常引起电压互感器(PT)烧毁、爆炸等恶性事故。
原因是电力系统中有大量的储能元件,如电压互感器、变压器、电抗器等电感元件,电容器、线路对地电容、断路器的断口电容等电容元件。
这些元件组成了许多串联或并联的振荡回路。
在正常的稳定状态下运行时,不可能产生严重的的振荡。
但当系统发生故障或由于某种原因电网参数发生了变化,就很可能发生谐振。
例如在中性点非有效接地系统,其中一相断线接地,受电变压器和相间电容;电压互感器和线路对地电容;空载变压器和空载长架空线路电容所形成的振荡回路,都有可能发生谐振。
谐振常常引起持续时间很长的过电压。
电压互感器一类的电感元件在正常工作电压下,通常铁芯磁通密度不高,铁芯并不饱和,如在过电压下铁芯饱和了,电感会迅速降低,从而与电容产生谐振,也就是常说的铁磁谐振。
铁磁谐振不仅可在基频( 50HZ )下发生,也可在高频(170HZ) 、低频(17HZ,25HZ) 下发生。
正常运行时,电压互感器开口三角的电压(3U0)理论上是0V,在实际运行中一般也不会超过10V。
当系统发生单相接地时,3U0将迅速升高,达到30到120V,形成过电压。
当系统上电时,由于三相不同期等原因,会在电压互感器中产生很大的谐波电流,导致互感器内部铁芯饱和了,造成二次侧的波形发生畸变,当畸变足够大时,就形成了铁磁谐振。
铁磁谐振产生的条件一般有:1、中性点非有效接地系统;2、非线性电感元件和电容元件组成振荡回路。
回路线性状态时的自振频率小于某此低频谐振频率,当铁芯饱和而电感减小时,回路自振频率增加,恰好等于某此低频谐振频率;3、振荡回路中的损耗足够小,所以谐振实际发生在系统空载或轻载时;4、电感的非线性要相当大;5、有激发作用时,即系统有某种过电压、电流的扰动,如跳、合闸,瞬间接地、瞬间短路等。
二次消谐原理:1、利用消谐装置实时监测PT 开口三角电压,运用DFT算法计算出零序电压四种频率的电压分量。
利用装置中压敏元件的电抗随谐波电压而变化,从而破坏PT铁磁谐振的产生条件。
铁磁谐振是怎样产生的?铁磁谐振产生的条件一般有:1、中性点非有效接地系统;2、非线性电感元件和电容元件组成振荡回路。
回路线性状态时的自振频率小于某此低频谐振频率,当铁芯饱和而电感减小时,回路自振频率增加,恰好等于某此低频谐振频率;3、振荡回路中的损耗足够小,所以谐振实际发生在系统空载或轻载时;4、电感的非线性要相当大;5、有激发作用时,即系统有某种过电压、电流的扰动,如跳、合闸,瞬间接地、瞬间短路等。
动作判据:1、谐振判据:17HZ谐波电压≥17V,25HZ谐波电压≥25V,150HZ谐波电压≥33V.2、接地判据:基波电压≥30V。
3、过压判据≥120V。
铁磁谐振发生后常常引起电压互感器(PT)烧毁、爆炸等恶性事故。
原因是电力系统中有大量的储能元件,如电压互感器、变压器、电抗器等电感元件,电容器、线路对地电容、断路器的断口电容等电容元件。
这些元件组成了许多串联或并联的振荡回路。
在正常的稳定状态下运行时,不可能产生严重的的振荡。
但当系统发生故障或由于某种原因电网参数发生了变化,就很可能发生谐振。
例如在中性点非有效接地系统,其中一相断线接地,受电变压器和相间电容;电压互感器和线路对地电容;空载变压器和空载长架空线路电容所形成的振荡回路,都有可能发生谐振。
谐振常常引起持续时间很长的过电压。
电压互感器一类的电感元件在正常工作电压下,通常铁芯磁通密度不高,铁芯并不饱和,如在过电压下铁芯饱和了,电感会迅速降低,从而与电容产生谐振,也就是常说的铁磁谐振。
铁磁谐振不仅可在基频(50HZ)下发生,也可在高频(170HZ)、低频(17HZ,25HZ)下发生。
正常运行时,电压互感器开口三角的电压(3U0)理论上是0V,在实际运行中一般也不会超过10V。
当系统发生单相接地时,3U0将迅速升高,达到30到120V,形成过电压。
当系统上电时,由于三相不同期等原因,会在电压互感器中产生很大的谐波电流,导致互感器内部铁芯饱和了,造成二次侧的波形发生畸变,当畸变足够大时,就形成了铁磁谐振。
pt铁磁谐振产生的原因
PT铁磁谐振是指在PT铁磁材料中,当该材料受到外加交变磁场作用时,它的磁化强度随着外加磁场频率的变化而发生共振现象。
PT铁磁谐振产生的原因如下:
1. 磁性材料的磁滞回线特性:PT铁磁材料的磁滞回线特性使
得其磁化强度在交变磁场作用下会有滞后效应。
当外加磁场频率接近PT铁磁材料的自然频率时,磁化强度会迅速增加,产
生较大的磁响应。
2. 自旋-声子耦合效应:PT铁磁材料中自旋与晶格之间存在相
互作用,这个相互作用可以通过自旋-声子耦合实现。
当外加
磁场频率接近PT铁磁材料的自然频率时,自旋和声子之间的
耦合效应会增强,从而引起材料的共振反应。
3. 核自旋的Larmor共振:PT铁磁材料中的原子核也会产生自旋,当外加磁场频率接近材料的Larmor共振频率时,原子核
自旋会在外磁场的作用下发生共振,从而引起材料的共振现象。
以上是PT铁磁谐振产生的主要原因,这些原因使得PT铁磁
材料在特定频率下对外加交变磁场具有较大的响应。
铁磁谐振的几个特点
1)对于铁磁谐振电路,在相同的电源电势作用下回路可能不只一种稳定的工作状态。
电路到底稳定在哪种工作状态要看外界冲击引起的过渡过程的情况。
2)PT的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身也限制了过电压的幅值。
此外回路损耗也使谐振过电压受到阻尼和限制。
当回路电阻大于一定的数值时,就不会出现强烈的铁磁谐振过电压。
3)串联谐振电路来说,产生铁磁谐振过电压的的必要条件是因此铁磁谐振可在很大
的范围内发生。
4)维持谐振振荡和抵偿回路电阻损耗的能量均由工频电源供给。
为使工频能量转化为其它谐振频率的能量,其转化过程必须是周期性且有节律的,即…1/2(1,2,3…)
倍频率的谐振。
5)铁磁谐振对PT的损坏。
电磁谐振(分频)一般应具备如下三个条件。
①铁磁式电压互感器(PT)的非线性效应是产生铁磁谐振的主要原因。
②PT感抗为容抗的100倍以内,即参数匹配在谐振范围。
③要有激发条件,如PT突然合闸、单相接地突然消失、外界对系统的干扰或系统
操作产生的过电压等。
据试验分频谐振的电流为正常电流的240倍以上,工频谐振电流为正常电流的40~60倍左右,高频谐振电流更小。
在这些谐振中,分频谐振的破坏最大,如果PT的绝缘
良好,工频和高频一般不会危及设备的安全
当系统发生单相接地时,故障点流过电容电流,末接地的两相相电压长高√3,这将严重影响线路和电气设备的安全运行(此时电压互感器的励磁阻抗很大,故流过的电流很小)。
但是,一旦接地故障点消除,非接地相在故障期间已充的电荷只能通过电压互感器高压线圈经其自身的接地点接入大地。
在这一瞬间电压突变过程中,电压互感器高压线圈的非接地两相的励磁电流就要突然增大,甚至饱和、由此构成相间串联谐振。
由于接地电弧熄灭时间不同,故障点的切除就不一样。
因此,不一定在每次出现单相接地故障时,电压互感器高压线圈中都要产生很大的激磁电流,其高压侧熔断器的情况也有所不同。
铁磁谐振的常用消除办法
根据以上分析配电系统铁磁谐振的特性,就不难找到加以解决的办法。
通常的解决办法有:
1)PT一次的中性点加装阻尼电阻。
该方法在已广泛采用,生产定型产品的厂家比较多,在实际运用中都取得了满意的效果。
如西安电瓷厂生产的RXQ系列消谐器,该消谐器串接于PT一次绕组中性点与地之间,内部材料为大容量的非线性碳化硅电阻片及散热片等串联组装于瓷套内而成。
其工作原理为:在低压下消谐器呈高电阻值(可达几百千欧)使谐振在起始阶段不易发展,单相接地时,消谐器上出现千余伏电压,它的非线性电阻下降,使其不影响接地保护的工作。
2)在PT开口三角侧并联固定(或可变)阻尼,一些要求不太高的变电所或配电系统常在PT开口三角处并联电灯泡或电炉丝。
其缺点是:电灯泡或电炉丝易损坏,当其损坏后将不会有消谐作用;当系统发生单相接地时,在开口三角侧将产生100 V的电压,而由于电灯泡或电炉丝的冷态电阻是较小的,这将在PT开口三角侧流过较大的电流引起PT损坏。
针对这些办法的不足,一些厂家相继开发生产出了一些较高级的产品。
如云南昆明
灯泡厂生产的FXG系列消谐器,该系列消谐器主要用于35 kV及以下中性点不接地的电力系统铁磁谐振的抑制,该装置接于电压互感器的开口三角绕组,当发生谐振时,装置的鉴频系统自动投入“消谐电阻”吸收谐振能量,消除铁磁谐振。
其工作原理为:该消谐器主要用于消除分频谐振。
它由鉴频环节和消谐环节组成。
鉴频环节由电抗器、电容器、继电器构成的串联谐振回路组成。
设计谐振为25周波。
当电压在25周波下达到动作值时,继电器动作投入互感器开口三角的电阻进行消谐。
消谐环节的主要元件为消谐管,该管是专为消谐器设计制造的,具有特异电阻的真空元件。
该消谐器属低智能产品。
相应的高级产品如河北保定浪拜迪公司的消谐器,辽宁铁岭市智能研究所生产的消谐器。
它们的工作原理与FXG系列消谐器基本相似。
3)在PT开口三角侧并联直流电容器。
该种形式消谐器的成型产品不多,在国内使用的地方也不广。
但该形式消谐器为“零序谐振”的消除提供了新思路。