高中数学 必修四 学案:第三章 三角恒等变换 Word版
- 格式:doc
- 大小:152.98 KB
- 文档页数:2
3.2简单的三角恒等变换(三) 教学目标(一) 知识与技能目标熟练掌握三角公式及其变形公式.(二) 过程与能力目标抓住角、函数式得特点,灵活运用三角公式解决一些实际问题.(三) 情感与态度目标培养学生观察、分析、解决问题的能力.教学重点和、差、倍角公式的灵活应用.教学难点如何灵活应用和、差、倍角公式的进行三角式化简、求值、证明. 教学过程例1:教材P141面例4例1. 如图,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠COP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.例2:把一段半径为R(分别设边与角为自变量)解:(1)如图,设矩形长为l ,则面积224l R l S +=, 所以,4)()4(22222222l R l l R l S +-=-=当且仅当,224222R R l == 即R l 2=时,2S 取得最大值44R ,此时S 取得最大值22R ,矩形的宽为R RR 2222=即长、宽相等,矩形为圆内接正方形. (2)设角为自变量,设对角线与一条边的夹角为θ,矩形长与宽分别为 θsin 2R 、θcos 2R ,所以面积θθθ2sin 2sin 2cos 22R R R S =⨯=.而12sin ≤θ,所以22R S ≤,当且仅当12sin =θ时,S 取最大值22R ,所以当且仅当︒=902θ即︒=45θ时, S 取最大值,此时矩形为内接正方形.变式:已知半径为1的半圆,PQRS 是半圆的内接矩形如图,问P 点在什么位置时,矩形的面积最大,并求最大面积时的值.解:设,α=∠SOP 则,cos ,sin αα==OS SP故S 四边形PQRS ααα2sin cos 2sin =⨯=故α为︒45时,1max =S课堂小结建立函数模型利用三角恒等变换解决实际问题.课后作业1. 阅读教材P.139到P.142;2. 《习案》作业三十五.O。
.二倍角的正弦、余弦、正切公式[提出问题]问题:在公式(α+β),(α+β)和(α+β)中,若α=β,公式还成立吗?提示:成立.问题:在上述公式中,若α=β,你能得到什么结论?提示:α=α-α,α=αα,α=α-α).[导入新知]二倍角公式[化解疑难]细解“倍角公式”()要注意公式运用的前提是所含各三角函数有意义.()倍角公式中的“倍角”是相对的,对于两个角的比值等于的情况都成立,如α是α的倍,α是的倍.这里蕴含着换元思想.这就是说,“倍”是相对而言的,是描述两个数量之间的关系的.()注意倍角公式的灵活运用,要会正用、逆用、变形用.[例]();()-°;()°-°);()°)-°);() ° ° °.[解]()原式===.()原式=(×°)=°=(×°+°)=°=.()原式=(×°)=°=(°-°)=-°=-.()原式=°-() ° ° °)=°-(()) °)) ° °)=° °-)=° °)=.()原式=°· °· °· ° °)=°· °· ° °)=°· ° °)=° °)=.[类题通法]化简求值的四个方向三角函数的化简有四个方向,即分别从“角”“函数名”“幂”“形”着手分析,消除差异.[活学活用]化简:()θ)-θ);().答案:() θ()[例] ()已知=,≤()已知α∈,且α=,求α.[解] ()∵≤α<,∴≤α+<.∵>,∴<α+<.∴=-=-=-.∴α=α+=α+α+=×-×=-,α=-=-=-×=.∴=α-α=×=-.()∵α=-=-,=-=-=-,∴原方程可化为-α+=-α+,解得=或=-.。
3.2 简单的三角恒等变换自主学习知识梳理1.半角公式(1)S α2:sin α2=__________;(2)C α2:cos α2=________; (3)T α2:tan α2=________________=________________=__________(有理形式). 2.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),cos φ=__________,sin φ=______________其中φ称为辅助角,它的终边所在象限由________决定.自主探究1.试用cos α表示sin 2α2、cos 2α2、tan 2α2.2.证明:tan α2=sin α1+cos α=1-cos αsin α.对点讲练知识点一 半角公式的应用例1 已知sin θ=45,且5π2<θ<3π,求cos θ2和tan θ2的值.回顾归纳 在运用半角公式时,要注意根号前符号的选取,不能确定时,根号前应保持正、负两个符号.变式训练1 已知α为钝角,β为锐角,且sin α=45,sin β=1213,求cos α-β2.知识点二 利用辅助角公式研究函数性质例2 已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合.回顾归纳 研究形如f (x )=a sin 2ωx +b sin ωx cos ωx +c cos 2ωx 的性质时,先化成f (x )=A sin(ω′x +φ)+B 的形式后,再解答.这是一个基本题型,许多题目化简后都化归为该题型.变式训练2 已知函数f (x )=sin(x +π6)+sin ⎝⎛⎭⎫x -π6+cos x +a (a ∈R ). (1)求函数y =f (x )的单调增区间;(2)若函数f (x )在⎣⎡⎦⎤-π2,π2上的最大值与最小值的和为3,求实数a 的值.知识点三 三角函数在实际问题中的应用例3 如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠COP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.回顾归纳 利用三角函数知识解决实际问题,关键是目标函数的构建,自变量常常选取一个恰当的角度,要注意结合实际问题确定自变量的范围.变式训练3 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图所示).1.学习三角恒等变换,不要只顾死记硬背公式,而忽视对思想方法的理解,要立足于在推导过程中记忆和运用公式.2.形如f (x )=a sin x +b cos x ,运用辅助角公式熟练化为一个角的一个三角函数的形式,即f (x )=a 2+b 2sin(x +φ) (φ由sin φ=b a 2+b 2,cos φ=a a 2+b2确定)进而研究函数f (x )性质. 如f (x )=sin x ±cos x =2sin ⎝⎛⎭⎫x ±π4, f (x )=sin x ±3cos x =2sin ⎝⎛⎭⎫x ±π3等.课时作业一、选择题1.已知180°<α<360°,则cos α2的值等于( ) A .-1-cos α2 B. 1-cos α2C .-1+cos α2 D. 1+cos α22.如果|cos θ|=15,5π2<θ<3π,那么sin θ2的值为( ) A .-105 B.105C .-155 D.1553.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .a >b >c B .a <b <cC .a <c <bD .b <c <a4.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A.⎣⎡⎦⎤-π,-5π6B.⎣⎡⎦⎤-5π6,-π6 C.⎣⎡⎦⎤-π3,0 D.⎣⎡⎦⎤-π6,0 5.函数f (x )=cos x (sin x +cos x )的最小正周期为( )A .2πB .π C.π2 D.π4二、填空题6.函数y =cos x +cos ⎝⎛⎭⎫x +π3的最大值是________. 7.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ的值是________.8.已知函数f (x )=a sin[(1-a )x ]+cos[(1-a )x ]的最大值为2,则f (x )的最小正周期为________.三、解答题9.已知向量a =(sin(π2+x ),3cos x ),b =(sin x ,cos x ),f (x )=a ·b . (1)求f (x )的最小正周期和单调增区间;(2)如果三角形ABC 中,满足f (A )=32,求角A 的值.10.已知函数f (x )=2a sin 2x -23a sin x cos x +b (a >0)的定义域为⎣⎡⎦⎤0,π2,值域为[-5,4],求常数a ,b 的值.§3.2 简单的三角恒等变换答案知识梳理1.(1)±1-cos α2 (2)± 1+cos α2 (3)± 1-cos α1+cos α sin α1+cos α 1-cos αsin α 2.a a 2+b 2 b a 2+b 2点(a ,b ) 自主探究1.解 ∵cos α=cos 2α2-sin 2α2=1-2sin 2α2∴2sin 2α2=1-cos α,sin 2α2=1-cos α2. ① ∵cos α=2cos 2α2-1,∴cos 2α2=1+cos α2② 由①②得:tan 2α2=1-cos α1+cos α. 2.证明 ∵sin α1+cos α=2sin α2cos α22cos 2α2=tan α2. ∴tan α2=sin α1+cos α,同理可证:tan α2=1-cos αsin α. ∴tan α2=sin α1+cos α=1-cos αsin α. 对点讲练例1 解 ∵sin θ=45,5π2<θ<3π. ∴cos θ=-1-sin 2θ=-35. 又5π4<θ2<3π2. ∴cos θ2=-1+cos θ2=-1-352=-55. tan θ2=1-cos θ1+cos θ=1-⎝⎛⎭⎫-351+⎝⎛⎭⎫-35=2.变式训练1 解 ∵α为钝角,β为锐角,sin α=45,sin β=1213. ∴cos α=-35,cos β=513. cos(α-β)=cos αcos β+sin αsin β=-35×513+45×1213=3365. 又∵π2<α<π,0<β<π2, ∴0<α-β<π.0<α-β2<π2. ∴cos α-β2=1+cos (α-β)2=1+33652=76565. 例2 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6 +2sin 2⎝⎛⎭⎫x -π12 =3sin2⎝⎛⎭⎫x -π12+1-cos2⎝⎛⎭⎫x -π12 =2⎣⎡⎦⎤32sin2⎝⎛⎭⎫x -π12-12cos2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1,∴T =2π2=π. (2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1, 有2x -π3=2k π+π2, 即x =k π+5π12(k ∈Z ), ∴所求x 的集合为{x |x =k π+5π12,k ∈Z }. 变式训练2 解 (1)f (x )=sin ⎝⎛⎭⎫x +π6+ sin ⎝⎛⎭⎫x -π6+cos x +a =3sin x +cos x +a =2sin ⎝⎛⎭⎫x +π6+a , 解不等式2k π-π2≤x +π6≤2k π+π2(k ∈Z ), 得y =f (x )的单调增区间是 ⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ). (2)当x ∈⎣⎡⎦⎤-π2,π2时,-π3≤x +π6≤2π3,sin ⎝⎛⎭⎫x +π6∈⎣⎡⎦⎤-32,1, ∴f (x )的值域是[-3+a,2+a ].故(-3+a )+(2+a )=3,即a =3-1.例3 解 在直角三角形OBC 中,OB =cos α,BC =sin α. 在直角三角形OAD 中,DA OA=tan 60°= 3.∴OA =33DA =33BC =33sin α, ∴AB =OB -OA =cos α-33sin α 设矩形ABCD 的面积为S ,则S =AB ·BC =⎝⎛⎭⎫cos α-33sin αsin α =sin αcos α-33sin 2α =12sin 2α-36(1-cos 2α) =12sin 2α+36cos 2α-36=13⎝⎛⎭⎫32sin 2α+12cos 2α-36 =13sin ⎝⎛⎭⎫2α+π6-36. 由于0<α<π3,所以π6<2α+π6<5π6, 所以当2α+π6=π2, 即α=π6时,S 最大=13-36=36. 因此,当α=π6时,矩形ABCD 的面积最大,最大面积为36. 变式训练3 解如图所示,连OC , 设∠COB =θ,则0<θ<π4,OC =1. ∵AB =OB -OA =cos θ-AD=cos θ-sin θ,∴S 矩形ABCD =AB ·BC=(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ =-12(1-cos 2θ)+12sin 2θ =12(sin 2θ+cos 2θ)-12=22cos ⎝⎛⎭⎫2θ-π4-12 ∴当2θ-π4=0,即θ=π8时,S max =2-12(m 2), ∴割出的长方形桌面的最大面积为2-12(m 2). 课时作业1.C 2.C3.C [由题可得a =sin 24°,b =sin 26°,c =sin 25°,所以a <c <b .]4.D [f (x )=2sin ⎝⎛⎭⎫x -π3,f (x )的单调递增区间为 ⎣⎡⎦⎤2k π-π6,2k π+56π (k ∈Z ), 令k =0得增区间为⎣⎡⎦⎤-π6,5π6.] 5.B [f (x )=sin x cos x +cos 2x =12sin 2x +1+cos 2x 2=12sin 2x +12cos 2x +12=22sin ⎝⎛⎭⎫2x +π4+12.∴T =π.] 6. 3解析 (1)y =cos x +cos ⎝⎛⎭⎫x +π3 =cos x +cos x cos π3-sin x sin π3=32cos x -32sin x =3⎝⎛⎭⎫32cos x -12sin x =3cos ⎝⎛⎭⎫x +π6. 当cos ⎝⎛⎭⎫x +π6=1时,y 有最大值 3. 7.-π6解析 3sin x -3cos x =23⎝⎛⎭⎫32sin x -12cos x =23sin ⎝⎛⎭⎫x -π6.∴φ=-π6. 8.π解析 由a +1=2,∴a =3,∴f (x )=-3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +5π6,∴T =π. 9.解 (1)由题意知,f (x )=sin x cos x +32+32cos 2x =sin(2x +π3)+32 2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 即k π-5π12≤x ≤k π+π12,k ∈Z 最小正周期为π,单调增区间为[k π-5π12,k π+π12],k ∈Z . (2)由(1)知,f (x )=sin ⎝⎛⎭⎫2x +π3+32. ∵f (A )=32,∴sin(2A +π3)=0, 又∵A ∈(0,π),∴π3<2A +π3<7π3,∴2A +π3=π或2π, ∴A =π3或5π6. 10.解 f (x )=2a sin 2x -23a sin x cos x +b=2a ·1-cos 2x 2-3a sin 2x +b =-(3a sin 2x +a cos 2x )+a +b=-2a sin ⎝⎛⎭⎫2x +π6+a +b ∵0≤x ≤π2,∴π6≤2x +π6≤76π. ∴-12≤sin ⎝⎛⎭⎫2x +π6≤1. ∵a >0,∴f (x )max =2a +b =4,f (x )min =b -a =-5. 由⎩⎪⎨⎪⎧ 2a +b =4b -a =-5,得⎩⎪⎨⎪⎧a =3b =-2.。
3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.三、学法与教学用具1. 学法:启发式教学2. 教学用具:多媒体四、教学设想:(一)导入:我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家可以猜想,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-=(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也可以用角α的余弦线来表示,大家思考:怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索()cos αβ-与cos α、cos β、sin α、sin β之间的关系,由此得到cos()cos cos sin sin αβαβαβ-=+,认识两角差余弦公式的结构.思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果?展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.思考:()cos ?αβ+=,()()cos cos αβαβ+=--⎡⎤⎣⎦,再利用两角差的余弦公式得出()()()()cos cos cos cos sin sin cos cos sin sin αβαβαβαβαβαβ+=--=-+-=-⎡⎤⎣⎦(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值.解:分析:把75、15构造成两个特殊角的和、差.()231cos 75cos 4530cos 45cos30sin 45sin 302222=+=-=⨯=()231cos15cos 4530cos 45cos30sin 45sin 30222=-=+=⨯=点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活运用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===- 所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角α、β的象限,也就是符号问题,学会灵活运用.(五)作业:15012.P T T -3.1.2两角和与差的正弦、余弦、正切公式(1)教案一、教学分析1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的.在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(α-β)与cos(α+β),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即α+β=α-(-β)的关系,从而由公式C(α-β)推得公式C(α+β),又如比较sin(α-β)与cos(α-β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式S(α-β)、S(α+β)等.2.通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解.因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义.3.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的. 二、三维目标1.知识与技能:在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力.2.过程与方法:通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.3.情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质.三、重点难点教学重点:两角和与差的正弦、余弦、正切公式及其推导.教学难点:灵活运用所学公式进行求值、化简、证明.四、课时安排2课时五、教学设想第1课时(一)导入新课思路 1.(旧知导入)教师先让学生回顾上节课所推导的两角差的余弦公式,并把公式默写在黑板上或打出幻灯片,注意有意识地让学生写整齐.然后教师引导学生观察cos(α-β)与cos(α+β)、sin(α-β)的内在联系,进行由旧知推出新知的转化过程,从而推导出C (α+β)、S (α-β)、S (α+β).本节课我们共同研究公式的推导及其应用.思路2.(问题导入)教师出示问题,先让学生计算以下几个题目,既可以复习回顾上节所学公式,又为本节新课作准备.若sin α=55,α∈(0,2π),cos β=1010,β∈(0,2π),求cos(α-β),cos(α+β)的值.学生利用公式C (α-β)很容易求得cos (α-β),但是如果求cos (α+β)的值就得想法转化为公式C (α-β)的形式来求,此时思路受阻,从而引出新课题,并由此展开联想探究其他公式.(二)推进新课、新知探究、提出问题①还记得两角差的余弦公式吗?请一位同学到黑板上默写出来.②在公式C (α-β)中,角β是任意角,请学生思考角α-β中β换成角-β是否可以?此时观察角α+β与α-(-β)之间的联系,如何利用公式C (α-β)来推导cos(α+β)=?③分析观察C (α+β)的结构有何特征?④在公式C (α-β)、C (α+β)的基础上能否推导sin(α+β)=?sin(α-β)=?⑤公式S (α-β)、S (α+β)的结构特征如何?⑥对比分析公式C (α-β)、C (α+β)、S (α-β)、S (α+β),能否推导出tan(α-β)=?tan (α+β)=?⑦分析观察公式T (α-β)、T (α+β)的结构特征如何?⑧思考如何灵活运用公式解题?活动:对问题①,学生默写完后,教师打出课件,然后引导学生观察两角差的余弦公式,点拨学生思考公式中的α,β既然可以是任意角,是怎样任意的?你会有些什么样的奇妙想法呢?鼓励学生大胆猜想,引导学生比较cos(α-β)与cos(α+β)中角的内在联系,学生有的会发现α-β中的角β可以变为角-β,所以α-(-β)=α+β〔也有的会根据加减运算关系直接把和角α+β化成差角α-(-β)的形式〕.这时教师适时引导学生转移到公式C (α-β)上来,这样就很自然地得到cos(α+β)=cos [α-(-β)]=cos αcos(-β)+sin αsin(-β)=cos αcos β-sin αsin β.所以有如下公式:(α+β)对问题②,教师引导学生细心观察公式C (α+β)的结构特征,可知“两角和的余弦,等于这两角的余弦积减去这两角的正弦积”,同时让学生对比公式C (α-β)进行记忆,并填空:cos75°=cos(_________)==__________=___________.对问题③,上面学生推得了两角和与差的余弦公式,教师引导学生观察思考,怎样才能得到两角和与差的正弦公式呢?我们利用什么公式来实现正、余弦的互化呢?学生可能有的想到利用诱导公式⑸⑹来化余弦为正弦(也有的想到利用同角的平方和关系式sin 2α+cos 2α=1来互化,此法让学生课下进行),因此有sin(α+β)=cos [2π-(α+β)]=cos [(2π-α)-β]=cos(2π-α)cos β+sin(2π-α)sin β =sin αcos β+cos αsin β.在上述公式中,β用-β代之,则sin(α-β)=sin [α+(-β)]=sin αcos(-β)+cos αsin(-β)=sin αcos β-cos αsin β. (α+β)(α-β).同时进一步体会本节公式的探究过程及公式变化特点,体验三角公式的这种简洁美、对称美.为强化记忆,教师可让学生填空,如sin(θ+φ)=___________,sin 75sin 72cos 75cos 72ππππ+=__________. 对问题⑥,教师引导学生思考,在我们推出了公式C (α-β)、C (α+β)、S (α+β)、S (α-β)后,自然想到两角和与差的正切公式,怎么样来推导出tan(α-β)=?,tan(α+β)=?呢?学生很容易想到利用同角三角函数关系式,化弦为切得到.在学生探究推导时很可能想不到讨论,这时教师不要直接提醒,让学生自己悟出来.当cos(α+β)≠0时,tan(α+β)=.sin sin cos cos sin cos cos sin )cos()sin(βαβαβαβββ-+=++a a 如果cos αcos β≠0,即cos α≠0且cos β≠0时,分子、分母同除以cos αcos β得tan(α+β)=)tan(tan 1tan tan βαβα--+,据角α、β的任意性,在上面的式子中,β用-β代之,则有tan(α-β)=.tan tan 1tan tan )tan(tan 1)tan(tan βαβαβαβα+-=---+ 由此推得两角和、差的正切公式,简记为T (α-β)、T (α+β).对问题⑥,让学生自己联想思考,两角和与差的正切公式中α、β、α±β的取值是任意的吗?学生回顾自己的公式探究过程可知,α、β、α±β都不能等于2π+k π(k ∈Z ),并引导学生分析公式结构特征,加深公式记忆.对问题⑦⑧,教师与学生一起归类总结,我们把前面六个公式分类比较可得C (α+β)、S (α+β)、T (α+β)叫和角公式;S (α-β)、C (α-β)、T (α-β)叫差角公式.并由学生归纳总结以上六个公式的推导过程,从而得出以下逻辑联系图.可让学生自己画出这六个框图.通过逻辑联系图,深刻理解它们之间的内在联系,借以理解并灵活运用这些公式.同时教师应提醒学生注意:不仅要掌握这些公式的正用,还要注意它们的逆用及变形用.如两角和与差的正切公式的变形式tan α+tan β=tan(α+β)(1-tan αtan β),tan α-tan β=tan(α-β)(1+tan αtan β),在化简求值中就经常应用到,使解题过程大大简化,也体现了数学的简洁美.对于两角和与差的正切公式,当tan α,tan β或tan (α±β)的值不存在时,不能使用T (α±β)处理某些有关问题,但可改用诱导公式或其他方法,例如:化简tan(2π-β),因为tan 2π的值不存在,所以改用诱导公式tan(2π-β)=βββπβπsin cos )2cos()2sin(=--来处理等.(三)应用示例思路1例1 已知sin α=53-,α是第四象限角,求sin(4π-α),cos(4π+α),tan(4π-α)的值. 活动:教师引导学生分析题目中角的关系,在面对问题时要注意认真分析条件,明确要求.再思考应该联系什么公式,使用公式时要有什么准备,准备工作怎么进行等.例如本题中,要先求出cos α,tan α的值,才能利用公式得解,本题是直接应用公式解题,目的是为了让学生初步熟悉公式的应用,教师可以完全让学生自己独立完成.解:由sin α=53-,α是第四象限角,得cos α=54)53(1sin 122=--=-a . ∴tan α=a a cos sin =43-. 于是有sin(4π-α)=sin 4πcos α-cos 4πsin α=,1027)53(225422=-⨯-⨯ cos(4π+α)=cos 4πcos α-sin 4πsin α=,1027)53(225422=-⨯-⨯ tan(α-4π)=4tan tan 14tan tan ππa a +-=a a tan 11tan +-=7)43(1143-=-+--. 点评:本例是运用和差角公式的基础题,安排这个例题的目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯.变式训练1.不查表求cos75°,tan105°的值.解:cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30° =42621222322-=⨯-⨯, tan105°=tan(60°+45°)= 311345tan 60tan 145tan 60tan -+=-+ =-(2+3). 2.设α∈(0,2π),若sin α=53,则2sin(α+4π)等于( ) A.57 B.51 C.27 D.4 答案:A例 2 已知sin α=32,α∈(2π,π),cos β=43-,β∈(π,23π).求sin(α-β),cos(α+β),tan(α+β).活动:教师可先让学生自己探究解决,对探究困难的学生教师给以适当的点拨,指导学生认真分析题目中已知条件和所求值的内在联系.根据公式S (α-β)、C (α+β)、T (α+β)应先求出cosα、sin β、tan α、tan β的值,然后利用公式求值,但要注意解题中三角函数值的符号.解:由sin α=32,α∈(2π,π),得 cos α=a 2sin 1--=-2)32(1--=35-,∴tan α=552-. 又由cos β=31-,β∈(π,23π). sin β=β2cos 1--=47)43(12-=---, ∴tan β=37.∴sin(α-β)=sin αcos β-cos αsin β =32×(43-)-(12356)47()35(--=-⨯-. ∴cos(α+β)=cos αcos β-sin αsin β=(35-)×(43-)-32×(47-) =.127253+∴tan(α+β)=35215755637)552(137552tan tan 1tan tan ++-=⨯--+-=-+βαβα=17727532+-. 点评:本题仍是直接利用公式计算求值的基础题,其目的还是让学生熟练掌握公式的应用,训练学生的运算能力.变式训练引导学生看章头图,利用本节所学公式解答课本章头题,加强学生的应用意识.解:设电视发射塔高CD=x 米,∠CAB=α,则sin α=6730, 在Rt △ABD 中,tan(45°+α)=3030+x tan α. 于是x=30tan )45tan(30-+αα , 又∵sin α=6730,α∈(0,2π),∴cos α≈6760,tan α≈21. tan(45°+α)=211211tan 1tan 1-+≈-+αα=3, ∴x=21330⨯-30=150(米). 答:这座电视发射塔的高度约为150米.例3 在△ABC 中,sinA=53(0°<A<45°),cosB=135(45°<B<90°),求sinC 与cosC 的值. 活动:本题是解三角形问题,在必修5中还作专门的探究,这里用到的仅是与三角函数诱导公式与和差公式有关的问题,难度不大,但应是学生必须熟练掌握的.同时也能加强学生的应用意识,提高学生分析问题和解决问题的能力.教师可让学生自己阅读、探究、讨论解决,对有困难的学生教师引导学生分析题意和找清三角形各角之间的内在联系,从而找出解决问题的路子.教师要提醒学生注意角的范围这一暗含条件.解:∵在△ABC 中,A+B+C=180°,∴C=180°-(A+B).又∵sinA=53且0°<A<45°,∴cosA=54. 又∵cosB=135且45°<B<90°,∴sinB=1312. ∴sinC=sin [180°-(A+B)]=sin(A+B)=sinAcosB+cosAsinB =53×135+54×1312=6563, cosC=cos [180°-(A+B)]=-cos(A+B)=sinAsinB-cosAcosB=53×1312-54×135=6516. 点评:本题是利用两角和差公式,来解决三角形问题的典型例子,培养了学生的应用意识,也使学生更加认识了公式的作用,解决三角形问题时,要注意三角形内角和等于180°这一暗含条件.变式训练在△ABC 中,已知sin(A-B)cosB+cos(A-B)sinB ≥1,则△ABC 是( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰非直角三角形答案:C思路2例1 若sin(43π+α)=135,cos(4π-β)=53,且0<α<4π<β<43π,求cos(α+β)的值. 活动:本题是一个典型的变角问题,也是一道经典例题,对训练学生的运算能力以及逻辑思维能力很有价值.尽管学生思考时有点难度,但教师仍可放手让学生探究讨论,教师不可直接给出解答.对于探究不出的学生,教师可恰当点拨引导,指导学生解决问题的关键是寻找所求角与已知角的内在联系,引导学生理清所求的角与已知角的关系,观察选择应该选用哪个公式进行求解,同时也要特别提醒学生注意:在求有关角的三角函数值时,要特别注意确定准角的范围,准确判断好三角函数符号,这是解决这类问题的关键.学生完全理清思路后,教师应指导学生的规范书写,并熟练掌握它.对于程度比较好的学生可让其扩展本题,或变化条件,或变换所求的结论等.如教师可变换α,β角的范围,进行一题多变训练,提高学生灵活应用公式的能力,因此教师要充分利用好这个例题的训练价值.解:∵0<α<4π<β<43π,∴43π<43π+α<π,-2π<4π-β<0, 又已知sin(43π+α)=135,cos(4π-β)=53, ∴cos(43π+α)=1312-,sin(4π-β)=54-. ∴cos(α+β)=sin [2π+(α+β)]=sin [(43π+α)-(4π-β)] =sin(43π+α)cos(4π-β)-cos(43π+α)sin(4π-β) =135×53-(1312-)×(54-)=6533-. 本题是典型的变角问题,即把所求角利用已知角来表示,实际上就是化归思想.这需要巧妙地引导,充分让学生自己动手进行角的变换,培养学生灵活运用公式的能力.变式训练已知α,β∈(43π,π),sin(α+β)=53-,sin(β-4π)=1312,求cos(α+4π)的值. 解:∵α,β∈(43π,π),sin(α+β)=53-,sin(β-4π)=1312, ∴23π<α+β<2π,2π<β-4π<43π.∴cos(α+β)=54,cos(β-4π)=135-. ∴cos(α+4π)=cos [(α+β)-(β-4π)] =cos(α+β)cos(β-4π)+sin(α+β)sin(β-4π) =54×(135-)+(53-)×1312=6556-.例2 化简.sin sin )sin(sin sin )sin(sin sin )sin(aa a a θθθβθβββ-+-+- 活动:本题是直接利用公式把两角的和、差化为两单角的三角函数的形式,教师可以先让学生自己独立地探究,然后进行讲评.解:原式=aa a a a a sin sin sin cos cos sin sin sin sin cos cos sin sin sin sin cos cos sin θθθθβθβθββββ-+-+- =a a a a a a a a sin sin sin sin sin cos cos sin sin sin sin sin sin cos sin cos sin sin sin sin sin sin sin cos sin cos sin βθβθβθθβθβθβθβθβαθβ-+-+- =asin sin sin 0βθ =0.点评:本题是一个很好的运用公式进行化简的例子,通过学生独立解答,培养学生熟练运用公式的运算能力.变式训练 化简)cos(sin sin 2cos sin 2)sin(βαβαβαβα++-+ 解:原式=βαβαβαβαβαβαsin sin cos cos sin sin 2cos sin 2sin cos cos sin -+- =).tan()cos()sin(cos cos sin sin cos sin sin cos αβαβαββαβαβαβα-=--=+-(四)作业已知0<β<4π,4π<α<43π,cos(4π-α)=53,sin(43π+β)=135,求sin(α+β)的值. 解:∵4π<α<43π,∴2π-<4π-α<0.∴sin(4π-α)=2)53(1--=54-.又∵0<β<4π,∴43π<43π+β<π,cos(43π+β)=2)135(1--=1312-.∴sin(α+β)=-cos(2π+α+β)=-cos [(43π+β)-(4π-α)]=-cos(43π+β)cos(4π-α)-sin(43π+β)sin(4π-α)=-(1312-)×53135-×(54-)=6556.(五)课堂小结1.先由学生回顾本节课都学到了哪些数学知识和数学方法,有哪些收获与提高,在公式推导中你悟出了什么样的数学思想?对于这六个公式应如何对比记忆?其中正切公式的应用有什么条件限制?怎样用公式进行简单三角函数式的化简、求值与恒等式证明.2.教师画龙点睛:我们本节课要理解并掌握两角和与差的正弦、余弦、正切公式及其推导,明白从已知推得未知,理解数学中重要的数学思想——转化思想,并要正确熟练地运用公式解题.在解题时要注意分析三角函数名称、角的关系,一个题目能给出多种解法,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.3.1.2两角和与差的正弦、余弦、正切公式(2)教案教学分析1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的.在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(α-β)与cos(α+β),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即α+β=α-(-β)的关系,从而由公式C (α-β)推得公式C (α+β),又如比较sin(α-β)与cos(α-β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式S (α-β)、S (α+β)等.2.通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解.因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义.3.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的. 二、三维目标1.知识与技能:在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力. 2.过程与方法:通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.3.情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质. 三、重点难点教学重点:两角和与差的正弦、余弦、正切公式及其推导. 教学难点:灵活运用所学公式进行求值、化简、证明. 四、课时安排 2课时五、教学设想 (一)导入新课思路 1.(复习导入)让学生回忆上节课所学的六个公式,并回忆公式的来龙去脉,然后让一个学生把公式默写在黑板上或打出幻灯.教师引导学生回顾比较各公式的结构特征,说出它们的区别和联系,以及公式的正用、逆用及变形用,以利于对公式的深刻理解.这节课我们将进一步探究两角和与差的正弦、余弦、正切公式的灵活应用.思路2.(问题导入)教师可打出幻灯,出示一组练习题让学生先根据上节课所学的公式进行解答.1.化简下列各式(1)cos (α+β)cos β+sin (α+β)sin β;(2)cos sin 1tan cos sin cos sin sin 22---+--x x xx x x x ; (3).tan tan cos sin )sin()sin(2222αββαβαβα+-+ 2.证明下列各式(1);tan tan 1tan tan )cos()sin(βαβαβαβα++=-+(2)tan (α+β)tan (α-β)(1-tan 2tan 2β)=tan 2α-tan 2β; (3).sin sin )cos(2sin )2sin(αββααβα=+-+答案:1.(1)cos α;(2)0;(3)1.2.证明略.教师根据学生的解答情况进行一一点拨,并对上节课所学的六个公式进行回顾复习,由此展开新课.(二)推进新课、新知探究、提出问题①请同学们回忆这一段时间我们一起所学的和、差角公式.②请同学们回顾两角和与差公式的区别与联系,可从推导体系中思考.活动:待学生稍做回顾后,教师打出幻灯,出示和与差角公式,让学生进一步在直观上发现它们内在的区别与联系,理解公式的推导充分发挥了向量的工具作用,更要体会由特殊到一般的数学思想方法.教师引导学生观察,当α、β中有一个角为90°时,公式就变成诱导公式,所以前面所学的诱导公式其实是两角和与差公式的特例.在应用公式时,还要注意角的相对性,如α=(α+β)-β,)2()2(2βαβαβα---=+等.让学生在整个的数学体系中学会数学知识,学会数学方法,更重要的是学会发现问题的方法,以及善于发现规律及其内在联系的良好习惯,提高数学素养.sin (α±β)=sin αcos β±cos αsin β〔S(α±β)〕; cos (α±β)=cos αcos βsin αsin β〔C (α±β)〕;tan (α±β)=βαβαtan tan 1tan tan ±〔T (α±β)〕.讨论结果:略.(三)应用示例思路1例1 利用和差角公式计算下列各式的值.(1)sin72°cos42°-cos72°sin42°; (2)cos20°cos70°-sin20°sin70°;(3)15tan 115tan 1-+活动:本例实际上是公式的逆用,主要用来熟悉公式,可由学生自己完成.对部分学生,教师点拨学生细心观察题中式子的形式有何特点,再对比公式右边,马上发现(1)同公式S (α-β)的右边,(2)同公式C (α+β)右边形式一致,学生自然想到公式的逆用,从而化成特殊角的三角函数,并求得结果.再看(3)式与T (α+β)右边形式相近,但需要进行一定的变形.又因为tan45°=1,原式化为15tan 45tan 115tan 45tan -+,再逆用公式T (α+β)即可解得.解:(1)由公式S (α-β)得 原式=sin(72°-42°)=sin30°=21. (2)由公式C (α+β)得原式=cos(20°+70°)=cos90°=0. (3)由公式T (α+β)得原式=15tan 45tan 115tan 45tan -+=tan(45°+15°)=tan60°=3. 点评:本例体现了对公式的全面理解,要求学生能够从正、反两个角度使用公式.与正用相比,反用表现的是一种逆向思维,它不仅要求有一定的反向思维意识,对思维的灵活性要求也高,而且对公式要有更全面深刻的理解.变式训练 1.化简求值:(1)cos44°sin14°-sin44°cos14°; (2)sin14°cos16°+sin76°cos74°;(3)sin(54°-x)cos(36°+x)+cos(54°-x)sin(36°+x).解:(1)原式=sin(14°-44°)=sin(-30°)=-sin30°=21-. (2)原式=sin14°cos16°+cos14°sin16°=sin(14°+16°)=sin30°=21. (3)原式=sin [(54°-x)+(36°+x)]=sin90°=1.2.计算.75tan 175tan 1+- 解:原式=75tan 45tan 175tan 45tan +-=tan(45°-75°)=tan(-30°)=-tan30°=33-.例2 已知函数f(x)=sin(x+θ)+cos (x-θ)的定义域为R ,设θ∈[0,2π],若f(x)为偶函数,求θ的值.活动:本例是一道各地常用的、基础性较强的综合性统考题,其难度较小,只需利用偶函数的定义,加上本节学到的两角和与差的三角公式展开即可,但不容易得到满分.教师可先让学生自己探究,独立完成,然后教师进行点评.解:∵f(x)为偶函数,∴f(-x)=f(x),即sin(-x+θ)+cos(-x-θ)=sin(x+θ)+cos(x-θ), 即-sinxcos θ+cosxsin θ+cosxcos θ-sinxsin θ =sinxcos θ+cosxsin θ+cosxcos θ+sinxsin θ. ∴sinxcos θ+sinxsin θ=0.∴sinx(sin θ+cos θ)=0对任意x 都成立.∴2sin(θ+4π)=0,即sin(θ+4π)=0. ∴θ+4π=k π(k ∈Z ).∴θ=k π-4π(k ∈Z ).又θ∈[0,2π),∴θ=43π或θ=47π.点评:本例学生可能会根据偶函数的定义利用特殊值来求解.教师应提醒学生注意,如果将本例变为选择或填空,可利用特殊值快速解题,作为解答题利用特殊值是不严密的,以此训练学生逻辑思维能力.变式训练 已知:2π<β<α<43π,cos(α-β)=1312,sin(α+β)=54-,求cos2β的值.解:∵2π<β<α<43π,∴0<α-β<4π,π<α+β<23π.又∵cos(α-β)=1312,sin(α+β)= 54-,∴sin(α-β)=135,cos(α+β)=53-.∴cos2β=cos [(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β) =53-×1312+(54-)×135=6556-.例3 求证:cos α+3sin α=2sin(6π+α). 活动:本题虽小但其意义很大,从形式上就可看出来,左边是两个函数,而右边是一个函数,教师引导学生给予足够的重视.对于此题的证明,学生首先想到的证法就是把等式右边利用公式S (α+β)展开,化简整理即可得到左边此为证法,这是很自然的,教师要给予鼓励.同时教师可以有目的的引导学生把等式左边转化为公式S (α+β)的右边的形式,然后逆用公式化简即可求得等式右边的式子,这种证明方法不仅仅是方法的变化,更重要的是把两个三角函数化为一个三角函数.证明:方法一:右边=2(sin6πcos α+cos 6πsin α)=2(21cos α+23sin α)=cos α+3sin α=左边.方法二:左边=2(21cos α+23sin α)=2(sin 6πcos α+cos 6πsin α)=2sin(6π+α)=右边. 点评:本题给出了两种证法,方法一是正用公式的典例,而方法二则是逆用公式证明的,此法也给了我们一种重要的转化方法,要求学生熟练掌握其精神实质.本例的方法二将左边的系数1与3分别变为了21与23,即辅助角6π的正、余弦.关于形如asinx+bcosx (a ,b 不同时为零)的式子,引入辅助角变形为Asin(x+φ)的形式,其基本想法是“从右向左”用和角的正弦公式,把它化成Asin(x+φ)的形式.一般情况下,如果a=AC os φ,b=Asin φ,那么asinx+bcosx=A(sinxcos φ+cosxsin φ)=Asin(x+φ).由sin 2φ+cos 2φ=1,可得 A 2=a 2+b 2,A=±22b a +,不妨取A=22b a +,于是得到cos φ=22ba a +,sin φ=22b a b +,从而得到tan φ=ba ,因此asinx+bcosx=22b a +sin(x+φ),通过引入辅助。
3.2 简单的三角恒等变换(3个课时)一、课标要求:本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.五、学法与教学用具学法:讲授式教学六、教学设想:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.例1、试以cos α表示222sin ,cos ,tan 222ααα. 解:我们可以通过二倍角2cos 2cos12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=. 又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2、求证: (1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)、sin sin 2sin cos 22θϕθϕθϕ+-+=.证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sincos 22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想? 例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3、求函数sin y x x =+的周期,最大值和最小值.解:sin y x x =+这种形式我们在前面见过,1sin 2sin 2sin 223y x x x x x π⎛⎫⎛⎫==+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业:157158P P - 14T T -《三角恒等变换》复习课(2个课时)一、教学目标进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:二、知识与方法:1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、2π±β代替β、α=β等换元法可以推导出其它公式。
高中数学必修4 第3章 三角恒等变换 3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单使用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础. 二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不但有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,使用已学知识和方法的水平问题,等等. 三、教学设想: (一)导入:问题1: 我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家能够猜测,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜测是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-= (二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也能够用角α的余弦线来表示。
思考?.1角函数线来探求公式怎样联系单位圆上的三(1) 怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)?)2(的余弦线和余弦线的正弦线怎样作出角βαβα-,、、思考2:怎样联系向量的数量积探求公式?(1)结合图形,明确应该选择哪几个向量,它们是怎样表示的?(2)怎样利用向量的数量积的概念的计算公式得到探索结果? 两角差的余弦公式:βαβαβαsin sin cos cos )cos(⋅+⋅=-(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值. 解:分析:把75、15构造成两个特殊角的和、差.()231cos75cos 4530cos 45cos30sin 45sin 30222=+=-=⨯=()231cos15cos 4530cos 45cos30sin 45sin 302222=-=+=⨯=点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活使用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===-所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.思考:此题中没有),2ππα⎝⎛∈,呢? (四)练习:不查表计算以下各式的值:︒︒+︒︒20sin 80sin 20cos 80cos 1)(︒+︒15sin 2315cos 212)(解: ︒︒+︒︒20sin 80sin 20cos 80cos 1)( 2160cos )2080cos(=︒=︒-︒= (五)小结:两角差的余弦公式,首先要理解公式结构的特征,理解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角α、β的象限,也就是符号问题,学会灵活使用.(1)牢记公式.S S C C C ⋅+⋅=-)(βα(2)在“给值求值”题型中灵活处理已、未知关系. (六)作业3.1.2两角和与差的正弦、余弦、正切公式一、教材分析本节的主要内容是两角和与差的正弦、余弦和正切公式,为了引起学生学习本章的兴趣,理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用从而激发学生对本章内容的学习兴趣和求知欲。
数学必修4教学案:3.2 简单的三角恒等变换(教学案)数学必修4教学案:3.2简单的三角恒等变换(教、学案)3.2简单三角恒等式变换【教学目标】能够用所学公式简化、评估和证明三角函数公式,引导学生推导半角公式、和差公式和和差积公式(公式不需要记忆),使学生进一步提高运用变换、变换、方程等数学思想解决问题的能力。
【教学重点、难点】教学重点:引导学生学习三角变换的内容、思想和方法,了解三角变换的特点,在现有公式的基础上提高其推理和计算能力,并以半角公式、和差公式和和差积公式的推导为基础训练。
教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力。
【教学过程】回顾介绍:回顾角度倍增公式s2?、c2、t2?首先,让学生写下三倍角度的公式,注意等号两侧角度之间的关系,并特别注意C2?。
既然我们可以用单角度来表示双角度,我们可以用双角度来表示单角度吗?半角公式的推导和理解:例1、试以cos?表示sin2?2,cos2?2,tan22?2.分析:我们可以通过双角度cos??2cos角度公式?第二代?,21和cos??1?2sin2?2来做此题.(二倍(一代人?)22解决方案:cos??1.因为什么??2cos2?2.你能得到sin2吗?2.1.余弦?;2.2.1.你能得到Cos2吗?2.1.因为?。
2.你能用两个公式除以Tan 2吗?2.2.1.因为?。
?1.余弦?cos22sin2?Sin评论:⑴ 上述结果也可以表示为:21cos21cos2cos2tan21cos1cos并称之为半角公式(不要求记忆),符号由2角的象限决定。
⑵ 在三角函数公式的简化、求值和证明中,广泛使用了降幂和增幂公式以及降幂和增幂公式。
⑶ 代数变换通常侧重于公式的子结构形式的变换。
三角恒等式变换通常首先寻找公式中包含的角度之间的联系,并在此基础上选择合适的公式来联系它们,这是三角恒等式变换的一个重要特征。
3.2 简单的三角恒等变换学习目标.1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法.2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一.半角公式思考1.我们知道倍角公式中,“倍角是相对的”,那么对余弦的二倍角公式,若用2α替换α,结果怎样?答案.结果是cos α=2cos2α2-1=1-2sin2α2=cos2α2-sin2α2.思考2.根据上述结果,试用sin α,cos α表示sin α2,cos α2,tan α2.答案.∵cos2α2=1+cos α2,∴cos α2=±1+cos α2, 同理sin α2=±1-cos α2,∴tan α2=sinα2cosα2=±1-cos α1+cos α.思考3.利用tan α=sin αcos α和倍角公式又能得到tan α2与sin α,cos α怎样的关系?答案. tan α2=sin α2cos α2=sin α2·2cos α2cos α2·2cosα2=sin α1+cos α,tan α2=sin α2cos α2=sin α2·2sin α2cos α2·2sinα2=1-cos αsin α.梳理 sin α2=±1-cos α2,... cos α2=±1+cos α2, tanα2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α .知识点二.辅助角公式思考1.a sin x +b cos x 化简的步骤有哪些? 答案.(1)提常数,提出a 2+b 2得到a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2 sin x +b a 2+b 2cos x .(2)定角度,确定一个角θ满足: cos θ=a a 2+b2,sin θ=b a 2+b2(或sin θ=a a 2+b2,cos θ=b a 2+b 2).一般θ为特殊角⎝ ⎛⎭⎪⎫π4,π3等,则得到a 2+b 2(cos θsin x +sin θcos x )(或a 2+b 2(sin θsin x +cosθcos x )).(3)化简、逆用公式得a sin x +b cos x =a 2+b 2sin(x +θ)(或a sin x +b cos x =a 2+b 2cos(x -θ)).思考2.在上述化简过程中,如何确定θ所在的象限? 答案.θ所在的象限由a 和b 的符号确定. 梳理.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).(其中tan θ=b a)类型一.应用半角公式求值例1.已知sin θ=45,5π2<θ<3π,求cos θ2和tan θ2.解.∵sin θ=45,且5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.由cos θ=2cos 2θ2-1,得cos2θ2=1+cos θ2=15. ∵5π4<θ2<3π2,∴cos θ2=- 1+cos θ2=-55. tan θ2=sin θ1+cos θ=2.反思与感悟.(1)若没有给出角的范围,则根号前的正负号需要根据条件讨论. (2)由三角函数值求其他三角函数式的值的步骤: ①先化简所求的式子;②观察已知条件与所求式子之间的联系(从角和三角函数名称入手). 跟踪训练1.已知sin α=-817,且π<α<3π2,求sin α2,cos α2和tan α2. 解.∵sin α=-817,π<α<3π2,∴cos α=-1517.又∵π<α<3π2,∴π2<α2<3π4,∴sin α2=1-cos α2= 1+15172=41717, cos α2=-1+cos α2=- 1-15172=-1717, tan α2=sinα2cosα2=-4.类型二.三角恒等式的证明例2.求证:1+sin 4θ-cos 4θ2tan θ=1+sin 4θ+cos 4θ1-tan 2θ. 证明.要证原式,可以证明1+sin 4θ-cos 4θ1+sin 4θ+cos 4θ=2tan θ1-tan 2θ. ∵左边=sin 4θ+(1-cos 4θ)sin 4θ+(1+cos 4θ)=2sin 2θcos 2θ+2sin 22θ2sin 2θcos 2θ+2cos 22θ =2sin 2θ(cos 2θ+sin 2θ)2cos 2θ(sin 2θ+cos 2θ)=tan 2θ,右边=2tan θ1-tan 2θ=tan 2θ, ∴左边=右边, ∴原式得证.反思与感悟.证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简、左右归一或变更论证.对恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一,变更论证等方法.常用定义法、化弦法、化切法、拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法. 跟踪训练2.证明:sin α+11+sin α+cos α=12tan α2+12.证明.∵左边=2tanα21+tan2α2+11+2tanα21+tan 2 α2+1-tan2α21+tan 2α2=tan2α2+2tan α2+11+tan2α2+2tan α2+1-tan2α2=⎝ ⎛⎭⎪⎫tan α2+122tan α2+2=12⎝ ⎛⎭⎪⎫tan α2+1=12tan α2+12=右边, ∴原等式成立.类型三.利用辅助角公式研究函数性质例3.已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+2sin 2⎝ ⎛⎭⎪⎫x -π12 (x ∈R ).(1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 解.(1)∵f (x )=3sin(2x -π6)+2sin 2⎝ ⎛⎭⎪⎫x -π12 =3sin[2⎝ ⎛⎭⎪⎫x -π12]+1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12=2⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫32sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-12cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+1 =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6+1 =2sin ⎝ ⎛⎭⎪⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝ ⎛⎭⎪⎫2x -π3=1, 有2x -π3=2k π+π2,即x =k π+5π12 (k ∈Z ),∴所求x 的集合为{x |x =k π+5π12,k ∈Z }.反思与感悟.(1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型(余弦型)函数,这是解决问题的前提.(2)解此类题时要充分运用两角和(差)、二倍角公式、辅助角转换公式消除差异,减少角的种类和函数式的项数,为讨论函数性质提供保障.跟踪训练3.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫π3+x ·cos ⎝ ⎛⎭⎪⎫π3-x ,g (x )=12sin 2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值时x 的集合. 解.(1)f (x )=⎝ ⎛⎭⎪⎫12cos x -32sin x ·⎝ ⎛⎭⎪⎫12cos x +32sin x=14cos 2x -34sin 2x =1+cos 2x 8-3(1-cos 2x )8=12cos 2x -14, ∴f (x )的最小正周期为T =2π2=π. (2)h (x )=f (x )-g (x )=12cos 2x -12sin 2x=22cos ⎝⎛⎭⎪⎫2x +π4,当2x +π4=2k π(k ∈Z )时,h (x )有最大值22.此时x 的取值集合为⎩⎨⎧⎭⎬⎫x |x =k π-π8,k ∈Z .类型四.三角函数在实际问题中的应用例4.如图,ABCD 是一块边长为100 m 的正方形地皮,其中AST 是半径为90 m 的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P 在ST 上,相邻两边CQ 、CR 正好落在正方形的边BC 、CD 上,求矩形停车场PQCR 面积的最大值和最小值.解.如图连接AP ,设∠PAB =θ(0°≤θ≤90°),延长RP 交AB 于M ,则AM =90cos θ,MP =90sin θ. 所以PQ =MB =100-90cos θ,PR =MR -MP =100-90sin θ.所以S 矩形PQCR =PQ ·PR=(100-90cos θ)(100-90sin θ) =10 000-9 000(sin θ+cos θ) +8 100sin θcos θ.令t =sin θ+cos θ(1≤t ≤2), 则sin θcos θ=t 2-12.所以S 矩形PQCR =10 000-9 000t +8 100·t 2-12=8 1002(t -109)2+950. 故当t =109时,S 矩形PQCR 有最小值950 m 2;当t =2时,S 矩形PQCR 有最大值(14 050-9 0002) m 2.反思与感悟.此类问题关键在于构建函数模型,首先要选准角,有利于表示所需线段,其次要确定角的范围.跟踪训练4.某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图).解.连接OC ,设∠COB =θ,则0°<θ<45°,OC =1. ∵AB =OB -OA =cos θ-AD =cos θ-sin θ, ∴S 矩形ABCD =AB ·BC=(cos θ-sin θ)·sin θ =-sin 2θ+sin θcos θ =-12(1-cos 2θ)+12sin 2θ=12(sin 2θ+cos 2θ)-12 =22cos(2θ-45°)-12. 当2θ-45°=0°,即θ=22.5°时,S max =2-12(m 2). ∴割出的长方形桌面的最大面积为2-12m 2.1.若cos α=13,α∈(0,π),则cos α2的值为(..)A.63 B.-63 C.±63 D.±33答案.A解析.由题意知α2∈(0,π2),∴cos α2>0,cos α2=1+cos α2=63. 2.已知tan θ2=3,则cos θ等于(..) A.45 B.-45 C.415 D.-35 答案.B解析.cos θ=cos 2θ2-sin2θ2cos 2θ2+sin 2θ2=1-tan2θ21+tan 2θ2=1-321+32=-45.3.函数f (x )=sin 2x +3sin x cos x 在区间⎣⎢⎡⎦⎥⎤π4,π2上的最大值是(..)A.1B.2C.32D.3答案.C解析.f (x )=1-cos 2x 2+32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12, ∵x ∈⎣⎢⎡⎦⎥⎤π4,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤π3,5π6,∵sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤12,1, ∴f (x )max =1+12=32,故选C.4.函数f (x )=sin x -cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2的最小值为 .答案.-1解析.f (x )=2sin ⎝ ⎛⎭⎪⎫x -π4,x ∈⎣⎢⎡⎦⎥⎤0,π2.∵-π4≤x -π4≤π4,∴f (x )min =2sin ⎝ ⎛⎭⎪⎫-π4=-1.5.化简:(1+sin α+cos α)⎝⎛⎭⎪⎫sin α2-cos α22+2cos α.(180°<α<360°)解.原式=⎝⎛⎭⎪⎫2cos 2α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α24cos2α2=2cos α2⎝⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪cos α2=cosα2⎝⎛⎭⎪⎫sin2α2-cos2α2⎪⎪⎪⎪⎪⎪cosα2=-cosα2cos α⎪⎪⎪⎪⎪⎪cosα2.因为180°<α<360°,所以90°<α2<180°,所以cosα2<0,所以原式=cos α.1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式.2.辅助角公式a sin x+b cos x=a2+b2sin(x+φ),其中φ满足:①φ与点(a,b)同象限;②tan φ=ba(或sin φ=ba2+b2,cos φ=aa2+b2).3.研究形如f(x)=a sin x+b cos x的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a,b应熟练掌握,例如sin x±cos x=2sin⎝⎛⎭⎪⎫x±π4;sin x±3cos x=2sin⎝⎛⎭⎪⎫x±π3等.课时作业一、选择题1.若cos α=-45,α是第三象限角,则1+tanα21-tanα2等于(..)A.-12B.12C.2D.-2答案.A解析.∵α是第三象限角,cos α=-45,∴sin α=-35,∴1+tanα21-tan α2=1+sinα2cosα21-sinα2cosα2=cos α2+sinα2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sinα2cos α2+sinα2=1+sin αcos α=1-35-45=-12.2.若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5等于(..)A.1B.2C.3D.4 答案.C解析.cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsinπ5sin αcos π5-cos αsin π5=tan αtan π5+1tan αtanπ5-1=2+12-1=3.3.已知180°<α<360°,则cos α2的值等于(..)A.- 1-cos α2 B. 1-cos α2 C.- 1+cos α2D.1+cos α2答案.C4.在△ABC 中,若sin A sin B =cos 2C2,则△ABC 是(..)A.等边三角形B.等腰三角形精品文档C.不等边三角形D.直角三角形答案.B解析.用降幂公式进行求解. 5.设函数f (x )=3cos 2ωx +sin ωx cos ωx +a (其中ω>0,a ∈R ),且f (x )的图象在y 轴右侧的第一个最高点的横坐标是π6,则ω的值为(..) A.12 B.-13 C.-23 D.2π3答案.A解析.f (x )=32cos 2ωx +12sin 2ωx +32+a =sin ⎝⎛⎭⎪⎫2ωx +π3+32+a , 依题意得 2ω·π6+π3=π2⇒ω=12. 6.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c = 1-cos 50°2,则有(..) A.c <b <aB.a <b <cC.a <c <bD.b <c <a 答案.C解析.a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°, b =2sin 13°cos 13°=sin 26°,c =sin 25°,∵y =sin x 在[0,π2]上是单调递增的, ∴a <c <b .7.已知sin θ=m -3m +5,cos θ=4-2m m +5(π2<θ<π),则tan θ2等于(..) A.-13B.5C.-5或13D.-13或5 答案.B解析.由sin 2θ+cos 2θ=1,得(m -3m +5)2+(4-2m m +5)2=1,精品文档解得m =0或8,当m =0时,sin θ<0,不符合π2<θ<π.∴m =0舍去,故m =8,sin θ=513,cos θ=-1213,tan θ2=1-cos θsin θ=1+1213513=5.二、填空题8.设5π<θ<6π,cos θ2=a ,则sin θ4的值为 .答案.- 1-a2 解析.sin 2θ4=1-cos θ22, ∵θ∈(5π,6π),∴θ4∈⎝ ⎛⎭⎪⎫5π4,3π2,∴sin θ4=- 1-cos θ22=- 1-a2.9.sin 220°+sin 80°·sin 40°的值为 .答案.34解析.原式=sin 220°+sin(60°+20°)·sin(60°-20°)=sin 220°+(sin 60°cos 20°+cos 60°sin 20°)·(sin 60°·cos 20°-cos 60°sin 20°)=sin 220°+sin 260°cos 220°-cos 260°sin 220°=sin 220°+34cos 220°-14sin 220°=34sin 220°+34cos 220°=34.10.函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是 .答案.π解析.∵f (x )=22sin 2x -22cos 2x -2(1-cos 2x )=22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴T =2π2=π. 三、解答题11.已知sin ⎝⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,求cos α的值. 解.∵sin ⎝⎛⎭⎪⎫α+π3+sin α =sin αcos π3+cos αsin π3+sin α =32sin α+32cos α=-435. ∴32sin α+12cos α=-45, ∴sin ⎝⎛⎭⎪⎫α+π6=-45. ∵-π2<α<0,∴-π3<α+π6<π6, ∴cos ⎝⎛⎭⎪⎫α+π6=35. ∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6 =cos ⎝ ⎛⎭⎪⎫α+π6cos π6+sin ⎝⎛⎭⎪⎫α+π6sin π6 =35×32+⎝ ⎛⎭⎪⎫-45×12=33-410. 12.求证:tan 3x 2-tan x 2=2sin x cos x +cos 2x . 证明.∵左边=tan 3x 2-tan x 2=sin 3x 2cos 3x 2-sin x 2cos x 2=sin 3x 2cos x 2-cos 3x 2sin x 2cos 3x 2cos x 2=sin ⎝ ⎛⎭⎪⎫3x 2-x 2cos 3x 2cos x 2 =sin x cos 3x 2cos x 2=2sin x cos ⎝ ⎛⎭⎪⎫3x 2+x 2+cos ⎝ ⎛⎭⎪⎫3x 2-x 2=2sin x cos x +cos 2x=右边. ∴原等式得证.13.已知cos 2θ=725,π2<θ<π, (1)求tan θ的值;(2)求2cos 2θ2+sin θ2sin (θ+π4)的值. 解.(1)因为cos 2θ=725, 所以cos 2θ-sin 2θcos 2θ+sin 2θ=725, 所以1-tan 2θ1+tan 2θ=725, 解得tan θ=±34, 因为π2<θ<π,所以tan θ=-34. (2)因为π2<θ<π,tan θ=-34, 所以sin θ=35,cos θ=-45, 所以2cos 2θ2+sin θ2sin (θ+π4)=1+cos θ+sin θcos θ+sin θ =1-45+35-45+35=-4. 四、探究与拓展14.已知A +B =2π3,那么cos 2A +cos 2B 的最大值是 ,最小值是 . 答案.32.12解析.∵A +B =2π3, ∴cos 2A +cos 2B=12(1+cos 2A +1+cos 2B ) =1+12(cos 2A +cos 2B ) =1+cos(A +B )cos(A -B )=1+cos 2π3·cos(A -B ) =1-12cos(A -B ), ∴当cos(A -B )=-1时,原式取得最大值32; 当cos(A -B )=1时,原式取得最小值12. 15.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性. 解.(1)f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎪⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32. (2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增, 当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减.。
简单三角恒等变换复习一、公式体系1、和差公式及其变形:(1)βαβαβαsin cos cos sin )sin(±=± ⇔ )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos(μ=± ⇔ )cos(sin sin cos cos βαβαβα±=μ (3)βαβαβαtan tan 1tan tan )tan(μ±=± ⇔ 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+)tan tan 1)(tan(tan tan βαβαβα+-=-2、倍角公式的推导及其变形:(1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+=⇔ααα2sin 21cos sin =⇔2)cos (sin 2sin 1ααα±=±(2)ααααααααα22sin cos sin sin cos cos )cos(2cos -=-=+=)sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=⇔1cos 2)cos 1(cos sin cos 2cos 22222-=--=-=⇔αααααα⇔把1移项得αα2cos 22cos 1=+ 或 αα2cos 22cos 1=+ 【因为α是2α的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2cos 2cos 12αα=+因为α4是α2的两倍,所以公式也可以写成12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα2cos 24cos 12=+】αααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=⇔ ⇔把1移项得αα2sin 22cos 1=- 或αα2sin 22cos 1=- 【因为α是2α的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2sin 2cos 12αα=-因为α4是α2的两倍,所以公式也可以写成αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα2sin 24cos 12=-】二、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如)4()4(,)(,)(πβαπβααβαβββαα-++=+-+=-+=等等 (1)已知βα,都是锐角,135)cos(,54sin =+=βαα,求βsin 的值(2)已知,40,1312)45sin(,434,53)4cos(πββππαπαπ<<-=+<<=-求)sin(βα+的值 (提示:βαπαπβπ++=--+)4()45(,只要求出)sin(βαπ++即可)2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知βα,都是锐角,10103cos ,55sin ==βα,求角βα+的弧度3、)(βα+T 公式的应用(1)求)32tan 28tan 1(332tan 28tan 0000+++的值(2)△ABC 中,角A 、B 满足2)tan 1)(tan 1(=++B A ,求A+B 的弧度4、弦化切,即已知tan ,求与sin ,cos 相关的式子的值:化为分式,分子分母同时除以αcos 或α2cos 等 (1)已知2tan =α,求αααααααααα2cos 2sin 3,2cos 2sin 12cos 2sin 1,cos sin 3cos 5sin +-++++-的值5、切化弦,再通分,再弦合一(1)、化简:① )10tan 31(50sin 0+ ② 035sin 10cos )110(tan ⋅-(2)、证明:x xx x x tan )2tan tan 1(cos 22sin =+6、综合应用,注意公式的灵活应用与因式分解结合 化简4cos 2sin 22+-1、sin 20cos 40cos 20sin 40+o o o o的值等于( )A .14 B .2 C .12D .42、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A .3- B .3 C .13- D .133、cos5πcos52π的值等于( )A .41B .21 C .2 D .44、 已知02A π<<,且3cos 5A =,那么sin 2A 等于( )A .425B .725C .1225D .24255、已知,41)4tan(,52)tan(=-=+πββα则)4tan(πα+的值等于 ( )A .1813 B.223 C.2213 D.1836、sin165º= ( ) A .21B .23C .426+D .426- 7、sin14ºcos16º+sin76ºcos74º的值是( )A .23 B .21 C .23 D .21- 8、已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A .247 B .247- C .724 D .724-9、化简2sin (4π-x )·sin (4π+x ),其结果是( ) A.sin2x B.cos2x C.-cos2x D.-sin2x 10、sin12π—3cos 12π的值是 ( ) A .0 B . —2 C .2 D . 2 sin125π11、)( 75tan 75tan 12的值为︒︒-A .32B .332C . 32-D .332-。
第3讲三角恒等变换考纲展示命题探究考点三角函数的化简与求值1两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβ;(Sα+β)sin(α-β)=sinαcosβ-cosαsinβ.(Sα-β)cos(α+β)=cosαcosβ-sinαsinβ;(Cα+β)cos(α-β)=cosαcosβ+sinαsinβ.(Cα-β)tan(α+β)=tanα+tanβ1-tanαtanβ;(Tα+β)tan(α-β)=tan α-tan β1+tan αtan β.(T α-β) 2 二倍角公式sin2α=2sin αcos α;(S 2α)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(C 2α)tan2α=2tan α1-tan 2α.(T 2α) 3 公式的变形与应用(1)两角和与差的正切公式的变形tan α+tan β=tan(α+β)(1-tan αtan β);tan α-tan β=tan(α-β)(1+tan αtan β).(2)升幂公式1+cos α=2cos 2α2;1-cos α=2sin 2α2. (3)降幂公式sin 2α=1-cos2α2;cos 2α=1+cos2α2. (4)其他常用变形sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α; cos2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α; 1±sin α=⎝ ⎛⎭⎪⎫sin α2±cos α22; tan α2=sin α1+cos α=1-cos αsin α. 4 辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b 2. 5 角的拆分与组合(1)已知角表示未知角例如,2α=(α+β)+(α-β),2β=(α+β)-(α-β),α=(α+β)-β=(α-β)+β,α=⎝ ⎛⎭⎪⎫π4+α-π4=⎝ ⎛⎭⎪⎫α-π3+π3. (2)互余与互补关系例如,⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫3π4-α=π, ⎝ ⎛⎭⎪⎫π3+α+⎝ ⎛⎭⎪⎫π6-α=π2. (3)非特殊角转化为特殊角例如,15°=45°-30°,75°=45°+30°.注意点 先看角,再求值在求值的题目中,一定要注意角的范围,要做到“先看角的范围,再求值”.1.思维辨析(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( )(2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意α,β都成立.( )(4)存在实数α,使得tan2α=2tan α.( )(5)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值有关.( )答案 (1)√ (2)√ (3)× (4)√ (5)√2.(1)化简cos15°cos45°-cos75°sin45°的值为( )A.12B.32 C .-12D .-32 (2)1-tan 275°tan75°的值为( )A .2 3 B.233C .-2 3D .-233 答案 (1)A (2)C解析 (1)cos15°cos45°-cos75°sin45°=cos15°cos45°-sin15°sin45°=cos(15°+45°)=cos60°=12.故选A.(2)由题意知2tan150°=-2 3.3.在△ABC 中,tan A +tan B +3=3tan A ·tan B ,则C 等于( ) A.π3 B.2π3C.π6D.π4答案 A解析 由已知可得tan A +tan B =3(tan A ·tan B -1),∴tan(A +B )=tan A +tan B1-tan A tan B =-3, 又0<A +B <π,∴A +B =23π,∴C =π3.[考法综述] 此部分考查内容题型多样,但一般属于中低档题型,难度不大.主要侧重于两角和与差的三角函数公式、倍角公式为化简基础,化简三角函数关系式或求值.利用同角三角函数的基本关系式变异名为同名的三角函数,结合诱导公式、和差角公式及倍角公式进行恒等变形为高考热点,常与三角函数式的化简求值、三角函数的图象与性质、向量等知识综合考查.命题法 利用基本公式及变形式进行化简和求值典例 (1)3cos10°-1sin170°=( )A .4B .2C .-2D .-4(2)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( ) A .3α-β=π2 B .2α-β=π2C .3α+β=π2D .2α+β=π2(3)已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫x +π4,x ∈R ,且f ⎝ ⎛⎭⎪⎫5π12=32. ①求A 的值;②若f (θ)+f (-θ)=32,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝ ⎛⎭⎪⎫3π4-θ.[解析] (1)3cos10°-1sin170°=3cos10°-1sin10°=3sin10°-cos10°sin10°cos10°=2sin (10°-30°)12sin20°=-2sin20°12sin20°=-4,故选D. (2)由条件得sin αcos α=1+sin βcos β,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin ⎝ ⎛⎭⎪⎫π2-α,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.(3)①f ⎝ ⎛⎭⎪⎫5π12=A sin ⎝ ⎛⎭⎪⎫5π12+π4=32, ∴A ·32=32,A = 3.②f (θ)+f (-θ)=3sin ⎝ ⎛⎭⎪⎫θ+π4+3·sin ⎝ ⎛⎭⎪⎫-θ+π4=32, ∴3⎣⎢⎡⎦⎥⎤22(sin θ+cos θ)+22(-sin θ+cos θ)=32,∴6cos θ=32,cos θ=64,又θ∈⎝ ⎛⎭⎪⎫0,π2, ∴sin θ=1-cos 2θ=104,∴f ⎝ ⎛⎭⎪⎫34π-θ=3sin(π-θ)=3sin θ=304. [答案] (1)D (2)B (3)见解析【解题法】 三角函数的化简与求值方法(1)三角函数式化简遵循的三个原则①一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.②二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”.③三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.(2)三角函数求值的类型及方法①“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但非特殊角与特殊角总有一定关系.解题时,要利用观察得到的关系,结合三角函数公式转化为特殊角的三角函数.②“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.③“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角,有时要压缩角的取值范围.1.sin20°cos10°-cos160°sin10°=()A .-32 B.32C .-12 D.12答案 D解析 原式=sin20°cos10°+cos20°sin10°=sin(20°+10°)=12.2.化简cos40°cos25°1-sin40°=( )A .1 B. 3 C. 2 D .2答案 C 解析 原式=cos 220°-sin 220°cos25°sin 220°-2sin20°cos20°+cos 220°=cos 220°-sin 220°cos25°(cos20°-sin20°)=2sin65°cos25°=2cos25°cos25°= 2.3.已知向量a =⎝ ⎛⎭⎪⎫sin ⎝ ⎛⎭⎪⎫α+π6,1,b =(4,4cos α-3),若a ⊥b ,则sin ⎝⎛⎭⎪⎫α+4π3=( )A .-34 B .-14 C.34 D.14答案 B 解析 ∵a ⊥b ,∴a ·b =4sin ⎝ ⎛⎭⎪⎫α+π6+4cos α- 3=23sin α+6cos α- 3=43sin ⎝ ⎛⎭⎪⎫α+π3-3=0, ∴sin ⎝⎛⎭⎪⎫α+π3=14.∴sin ⎝ ⎛⎭⎪⎫α+4π3=-sin ⎝ ⎛⎭⎪⎫α+π3=-14.4.已知tan α=-2,tan(α+β)=17,则tan β的值为________. 答案 3解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17+21-27=3. 5.sin15°+sin75°的值是________.答案 62解析 解法一:sin15°+sin75°=sin(45°-30°)+sin(45°+30°)=2sin45°·cos30°=62.解法二:sin15°+sin75°=sin15°+cos15°=2sin(45°+15°)=2sin60°=62.6.已知函数y =cos x 与y =sin(2x +φ)(0≤φ≤π),它们的图象有一个横坐标为π3的交点,则φ的值是________.答案 π6解析 显然交点为⎝ ⎛⎭⎪⎫π3,12,故有sin ⎝ ⎛⎭⎪⎫23π+φ=12, ∴23π+φ=2k π+π6,k ∈Z ,或23π+φ=2k π+56π,k ∈Z ,∴φ=2k π-π2或φ=2k π+π6,k ∈Z ,又0≤φ≤π,故φ=π6.7.已知α∈⎝ ⎛⎭⎪⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则sin ⎝ ⎛⎭⎪⎫α+π4sin2α+cos2α+1=________.答案268解析 解法一:由2sin 2α-sin αcos α-3cos 2α=0,得(2sin α-3cos α)·(sin α+cos α)=0,∵α∈⎝ ⎛⎭⎪⎫0,π2,∴sin α+cos α>0,∴2sin α=3cos α,又sin 2α+cos 2α=1,∴cos α=21313,sin α=31313,∴sin ⎝ ⎛⎭⎪⎫α+π4sin2α+cos2α+1=22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)=268. 解法二:同解法一得2sin α=3cos α,即tan α=32,由三角函数定义令y =3,x =2,则r =13,又α∈⎝⎛⎭⎪⎫0,π2,故cos α=21313.(或对式子2sin 2α-sin αcos α-3cos 2α=0两边同时除去cos 2α得2tan 2α-tan α-3=0,即(2tan α-3)(tan α+1)=0,得tan α=32或tan α=-1(舍).)以下同解法一.8.化简tan π12-1tan π12=________.答案 -2 3解析 原式=sin π12cos π12-cos π12sin π12=-⎝ ⎛⎭⎪⎫cos 2π12-sin 2π12sin π12cos π12=-cos π612sin π6=-2 3.9.如图,A ,B ,C ,D 为平面四边形ABCD 的四个内角. (1)证明:tan A 2=1-cos Asin A ;(2)若A +C =180°,AB =6,BC =3,CD =4,AD =5,求tan A2+tan B 2+tan C 2+tan D2的值.解 (1)证法一:tan A2=sin A 2cos A 2=2sin 2A 22sin A 2cos A 2=1-cos A sin A .证法二:1-cos A sin A =2sin 2A 22sin A 2cos A 2=tan A2.(2)由A +C =180°,得C =180°-A ,D =180°-B .由(1),有tan A 2+tan B 2+tan C 2+tan D 2=1-cos A sin A +1-cos B sin B +1-cos (180°-A )sin (180°-A )+1-cos (180°-B )sin (180°-B )=2sin A +2sin B .连接BD .在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos A ,在△BCD 中,有BD 2=BC 2+CD 2-2BC ·CD cos C ,所以AB 2+AD 2-2AB ·AD cos A =BC 2+CD 2+2BC ·CD cos A .则cos A =AB 2+AD 2-BC 2-CD 22(AB ·AD +BC ·CD )=62+52-32-422(6×5+3×4)=37.于是sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫372=2107. 连接AC .同理可得cos B =AB 2+BC 2-AD 2-CD 22(AB ·BC +AD ·CD )=62+32-52-422(6×3+5×4)=119, 于是sin B =1-cos 2B =1-⎝⎛⎭⎪⎫1192=61019. 所以tan A 2+tan B 2+tan C 2+tan D2=2sin A +2sin B =2×7210+2×19610=4103.10.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55.(1)求sin ⎝ ⎛⎭⎪⎫π4+α的值; (2)求cos ⎝ ⎛⎭⎪⎫5π6-2α的值. 解 (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255.故sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α=22×⎝⎛⎭⎪⎫-255+22×55=-1010.(2)由(1)知sin2α=2sin αcos α=2×55×⎝⎛⎭⎪⎫-255=-45, cos2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫552=35,所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos2α+sin 5π6sin2α=⎝⎛⎭⎪⎫-32×35+12×⎝ ⎛⎭⎪⎫-45=-4+3310.已知α,β为三角形的两个内角,cos α=17,sin(α+β)=5314,则β=________.[错解][答案]π3或23π[错因分析](1)错解中没有明确α+β的范围,导致求cos(α+β)时不能正确判断符号.(2)所求函数值不是sinβ,而是cosβ,导致在(0,π)中角β有两解的错误.[正解] 因为0<α<π,cos α=17,所以sin α=1-cos 2α=437,故π3<α<π2,又因为0<α+β<π,sin(α+β)=5314<32,所以0<α+β<π3,或2π3<α+β<π,由π3<α<π2知2π3<α+β<π,所以cos(α+β)=-1-sin 2(α+β)=-1114,所以cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=⎝⎛⎭⎪⎫-1114×17+5314×437=12,又因为0<β<π,所以β=π3.[答案] π3[心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2021·衡水二中猜题]若sin ⎝⎛⎭⎪⎫π4+α=25,则sin2α等于( )A .-825 B.825 C .-1725 D.1725答案 C解析 sin2α=-cos ⎝ ⎛⎭⎪⎫π2+2α=2sin 2⎝⎛ π4+α⎭⎫ -1=2×⎝ ⎛⎭⎪⎫252-1=-1725,故选C.2.[2021·衡水二中一轮检测]若sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π3+2α=( )A .-78 B .-14 C. 14 D. 78答案 A解析 由sin ⎝ ⎛⎭⎪⎫π3-α=14,得sin ⎣⎢⎡ π2-⎦⎥⎤⎝ ⎛⎭⎪⎫π6+α=14,即cos ⎝ ⎛⎭⎪⎫π6+α=14,∴cos ⎝ ⎛⎭⎪⎫π3+2α=cos ⎣⎢⎡⎦⎥⎤2(π6+α)=2cos 2⎝⎛⎭⎪⎫π6+α-1=2×⎝ ⎛⎭⎪⎫142-1=-78.3.[2021·冀州中学周测]在△ABC 中,若cos A =45,cos B =513,则cos C =( )A.365B.3665C.1665D.3365 答案 C解析 在△ABC 中,0<A <π,0<B <π,从而sin A =35,sin B =1213,所以cos C =cos[π-(A +B )]=-cos(A +B )=sin A ·sin B -cos A ·cos B =35×1213-45×513=1665.4.[2021·衡水二中月考]已知π2<α<π,3sin2α=2cos α,则cos(α-π)等于( )A.23B.64C.223D.326答案 C解析 由3sin2α=2cos α得sin α=13.因为π2<α<π,所以cos(α-π)=-cos α=1-⎝ ⎛⎭⎪⎫132=223.故选C. 5.[2021·枣强中学周测]函数f (x )=2sin 2⎝ ⎛⎭⎪⎫π4+x -3cos2x ⎝ ⎛⎭⎪⎫π4≤x ≤π2的最大值为( )A .2B .3C .2+ 3D .2- 3答案 B解析 依题意,f (x )=1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+x -3cos2x =sin2x -3cos2x+1=2sin ⎝ ⎛⎭⎪⎫2x -π3+1,当π4≤x ≤π2时,π6≤2x -π3≤2π3,12≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1,此时f (x )的最大值是3,选B.6.[2021·冀州中学预测]若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2=( ) A.33 B .-33 C.539 D .-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2= cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2, 而π4+α∈⎝ ⎛⎭⎪⎫π4,3π4,π4-β2∈⎝ ⎛⎭⎪⎫π4,π2,因此sin ⎝ ⎛⎭⎪⎫π4+α=223,sin ⎝ ⎛⎭⎪⎫π4-β2=63,则cos ⎝ ⎛⎭⎪⎫α+β2=13×33+223×63=539. 7.[2021·枣强中学一轮检测]若α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2α+cos2α=14,则tan α的值等于( )A.22B.33C. 2D. 3答案 D解析 由二倍角公式可得sin 2α+1-2sin 2α=14,即sin 2α=34,又α∈⎝⎛⎭⎪⎫0,π2,所以sin α=32,即α=π3,所以tan α=tan π3=3,故选D. 8.[2021·冀州中学月考]关于函数f (x )=2(sin x -cos x )·cos x 的四个结论:p 1:最大值为2;p 2:把函数g (x )=2sin2x -1的图象向右平移π4个单位后可得到函数f (x )=2(sin x -cos x )cos x 的图象;p 3:单调递增区间为⎣⎢⎡⎦⎥⎤k π+7π8,k π+11π8,k ∈Z ; p 4:图象的对称中心为⎝ ⎛⎭⎪⎫k 2π+π8,-1,k ∈Z .其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个 答案 B解析 因为f (x )=2sin x cos x -2cos 2x =sin2x -cos2x -1=2sin ⎝ ⎛⎭⎪⎫2x -π4-1,所以最大值为2-1,所以p 1错误. 将g (x )=2sin2x -1的图象向右平移π4个单位后得到h (x )=2·sin2⎝⎛⎭⎪⎫x -π4-1=2sin ⎝ ⎛⎭⎪⎫2x -π2-1的图象,所以p 2错误. 由-π2+2k π≤2x -π4≤π2+2k π,k ∈Z ,解得-π8+k π≤x ≤3π8+k π,k ∈Z ,即增区间为⎣⎢⎡⎦⎥⎤-π8+k π,3π8+k π,k ∈Z ,所以p 3正确. 由2x -π4=k π,k ∈Z ,得x =k 2π+π8,k ∈Z ,所以图象的对称中心为⎝ ⎛⎭⎪⎫k 2π+π8,-1,k ∈Z ,所以p 4正确,所以选B.9.[2021·衡水中学月考]如图,圆O 与x 轴的正半轴的交点为A ,点C ,B 在圆O 上,且点C 位于第一象限,点B 的坐标为⎝ ⎛⎭⎪⎫1213,-513,∠AOC =α.若|BC |=1,则3cos 2α2-sin α2cos α2-32的值为________.答案 513解析 由题意得|OB |=|BC |=1,从而△OBC 为等边三角形,∴sin ∠AOB =sin ⎝ ⎛⎭⎪⎫π3-α=513,又∵3cos 2α2-sin α2cos α2-32=3·1+cos α2-sin α2-32=-12sin α+32cos α=sin ⎝⎛⎭⎪⎫α+2π3=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫α+2π3=sin ⎝ ⎛⎭⎪⎫π3-α=513.10.[2021·衡水中学期中]已知13sin α+5cos β=9,13cos α+5sin β=15,那么sin(α+β)的值为________.答案 5665解析 将两等式的两边分别平方再相加,得169+130sin(α+β)+25=306,所以sin(α+β)=5665.11.[2021·武邑中学期中]已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k的取值范围.解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin2ωx +cos2ωx +12-12=sin ⎝ ⎛⎭⎪⎫2ωx +π6.由题意知f (x )的最小正周期T =2π2ω=πω=π2,所以ω=2.所以f (x )=sin ⎝ ⎛⎭⎪⎫4x +π6.(2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π8+π6=sin ⎝⎛⎭⎪⎫4x -π3的图象,再将所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,所以g (x )=sin ⎝ ⎛⎭⎪⎫2x -π3.因为0≤x ≤π2,所以-π3≤2x -π3≤2π3.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数y =g (x )与y =-k 在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个交点,由正弦函数的图象可知-32≤-k <32或-k =1,所以-32<k ≤32或k =-1.12.[2021·衡水中学期末]已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2,求: (1)sin2α; (2)tan α-1tan α.解 (1)cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α=12sin ⎝ ⎛2α+π3⎭⎪⎫=-14, 即sin ⎝⎛⎭⎪⎫2α+π3=-12,注意到α∈⎝ ⎛⎭⎪⎫π3,π2, 故2α+π3∈⎝⎛⎭⎪⎫π,4π3, 从而cos ⎝ ⎛⎭⎪⎫2α+π3=-32,∴sin2α=sin ⎝⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛2α+π3⎭⎪⎫cos π3-cos ⎝⎛⎭⎪⎫2α+π3sin π3=-12×12+32×32=12.(2)∵2α∈⎝ ⎛⎭⎪⎫2π3,π,sin2α=12,∴cos2α=-32,∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos2αsin2α=-2×-3212=2 3.⎝⎛或者由(1)知2α+π3=7π6,∴α=5π12,∴sin2α=sin 5π6=12,cos2α=cos 5π6=-32,∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-cos2α12sin2α=⎭⎪⎫ 2 3.能力组13.[2021·冀州中学猜题]设sin ⎝ ⎛⎭⎪⎫π4+θ=13,则sin2θ=( )A .-79 B .-19 C.19 D.79答案 A解析 sin2θ=-cos ⎝ ⎛⎭⎪⎫π2+2θ=2sin 2⎝ ⎛⎭⎪⎫π4+θ-1=2×⎝ ⎛⎭⎪⎫132-1=-79.14.[2021·衡水中学模拟]已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为________.答案 ±35解析 ∵θ为第二象限角,∴θ2为第一、三象限角.∴cos θ2的值有两个.由sin(π-θ)=2425,可知sin θ=2425,∴cos θ=-725,∴2cos 2θ2=1825.∴cos θ2=±35.15.[2021·衡水中学仿真]已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π6+sin2x .(1)求f ⎝ ⎛⎭⎪⎫π8的值;(2)设α∈⎣⎢⎡⎦⎥⎤0,π2,sin α=255,证明:5f ⎝ ⎛⎭⎪⎫α-7π24=122tan4α. 解 (1)f (x )=cos ⎝⎛⎭⎪⎫2x +π6+sin2x =cos2x cos π6-sin2x sin π6+sin2x =32cos2x -12sin2x +sin2x =32cos2x +12sin2x =sin ⎝⎛⎭⎪⎫2x +π3, 所以f ⎝ ⎛⎭⎪⎫π8=sin ⎝⎛⎭⎪⎫2×π8+π3=sin ⎝ ⎛⎭⎪⎫π4+π3 =sin π4cos π3+cos π4sin π3=2+64.(2)证明:由(1),知f (x )=sin ⎝⎛⎭⎪⎫2x +π3,所以f ⎝ ⎛⎭⎪⎫α-7π24=sin ⎣⎢⎡ 2⎝ ⎛⎭⎪⎫α-7π24+⎦⎥⎤π3=sin ⎝⎛⎭⎪⎫2α-π4=22sin2α-22cos2α.因为α∈⎣⎢⎡⎦⎥⎤0,π2,sin α=255,所以cos α=1-sin 2α=55.所以sin2α=2sin αcos α=45,cos2α=1-2sin 2α=-35,tan2α=sin2αcos2α=-43.所以tan4α=2tan2α1-tan 22α=247. 所以5f ⎝ ⎛⎭⎪⎫α-7π24=5⎝ ⎛⎭⎪⎫22sin2α-22cos2α=5⎣⎢⎡⎦⎥⎤22×45-22×⎝ ⎛⎭⎪⎫-35=722,又122tan4α=122247=722,所以5f ⎝ ⎛⎭⎪⎫α-7π24=122tan4α.16.[2021·冀州中学一轮检测]已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4. (1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝ ⎛⎭⎪⎫α+π4cos2α,求cos α-sin α的值.解 (1)因为函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z .由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以,函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,有sin ⎝ ⎛⎭⎪⎫α+π4=45·cos ⎝ ⎛⎭⎪⎫α+π4(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝ ⎛⎭⎪⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α),即sinα+cosα=42(sinα+cosα).5(cosα-sinα)+2kπ,k∈当sinα+cosα=0时,由α是第二象限角,知α=3π4Z.此时,cosα-sinα=- 2.当sinα+cosα≠0时,有(cosα-sinα)2=54.由α是第二象限角,知cosα-sinα<0,此时cosα-sinα=-52.综上所述,cosα-sinα=-2或-52.。
一、学习目标
进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:
二、知识与方法:
1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、2
π±β代替β、α=β等换元法可以推导出其它公式。
你能根据下图回顾推导过程吗?
2.化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;
3.求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围。
4.证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等。
5. 三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式,cos α= cos βcos (α-β)- sin βsin (α-β),1= sin 2α+cos 2α,0030tan 130tan 1-+=000030
tan 45tan 130tan 45tan -+=tan (450+300)等。
例题
例1 已知sin (α+β)=
32,sin (α-β)=51,求β
αtan tan 的值。
例2求值:cos24°﹣sin6°﹣cos72°
例3化简(1)
0070sin 120sin 3-;(2)sin 2αsin 2β+cos 2αcos 2β-2
1cos2αcos2β。
例4设为锐角,且3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求证:α+2β=2
π。
例5如图所示,某村欲修建一横断面为等腰梯形的水渠,为降低成本,必须尽量减少水与水渠壁的接触面。
若水渠断面面积设计为定值m ,渠深8米。
则水渠壁的倾角α应为多少时,方能使修建的成本最低?
分析:解答本题的关键是把实际问题转化成数学模型,作出横断面的图形,要减少水与水渠壁的接触面只要使水与水渠断面周长最小,利用三角形的边角关系将倾角为α和横断面的周长L 之间建立函数关系,求函数的最小值
B C。