2波动作业 石永锋
- 格式:ppt
- 大小:505.50 KB
- 文档页数:27
波动图像问题错解例析
王昌平
【期刊名称】《中学生数理化(学研版)》
【年(卷),期】2011(000)005
【摘要】@@ 波动图像在机械振动与机械波一部分经常出现,笔者发现学生在解题过程中出现的问题也较多,下面用几个实例说明.rn例1如图1所示,分别为一列横波在某一时刻的波形图像和在x=6m处的质点从该时刻开始计时的振动图像,则这列波().
【总页数】1页(P31)
【作者】王昌平
【作者单位】河南省鲁山县第一高级中学
【正文语种】中文
【相关文献】
1.振动图像与波动图像问题分类赏析 [J], 唐昌琳
2.定势思维引起的错解例析 [J], 杨杰
3.二元一次方程组典型错解例析 [J], 兰华斌
4.一元一次方程中的错解例析 [J], 王昭雷
5.浅谈高中物理图像问题的教学——以"电场中的图像问题"为例 [J], 张丽
因版权原因,仅展示原文概要,查看原文内容请购买。
第二届全国电力职工技术成果奖获奖结果发布 2010-10-11 11:31:38 信息来源:中电联科技发展公司
第二届全国电力职工技术成果奖颁奖大会于9月28日在北京召开。
此次活动是由中国能源化学工会全国委员会、中国电力企业联合会共同发起,由中电联组织开展的全国电力职工技术创新成果评选活动。
中国电力企业联合会秘书长王志轩、中国能源化学工会副主席徐恩毅、国家电网公司工会副主席翟民、中国华能集团公司工委副主任吴志轩、国电集团公司工会祝静、中国电力投资集团公司工会张春华出席发布会并为获奖成果颁奖。
中国电力企业联合会科技开发服务中心主任、全国电力职工技术成果奖工作办公室常务副主任李斌主持会议。
此次活动共收到由各单位申报,集团、公司推荐的成果446项,汇集了近年来广大电力职工在技术改造和技术创新方面的智慧,突出了围绕电力生产安全及节能减排重点目标、围绕重大技术进展、结合生产管理和实际工作需要而进行的技术创新的特点。
经行业专家评审、现场调研以及主办单位审核等程序,共遴选出一等奖6项、二等奖27项(电网部分15项、电源部分12项)、三等奖62项(电网部分26项、电源部分36项)。
颁奖会后还组织部分企业对所推荐的重点项目进行了现场演示,特别是大唐集团的《风力发电机组球体导流罩专用吊具》通过小品的形式,把发明的过程真实再现受到了大家的热情赞誉。
全国电力职工技术成果奖的评选工作将根据行业发展和企业需要,进一步总结经验、丰富内涵、完善机制,以更好地引导和激励广大电力工程技术人员立足岗位技术创新的积极性和创造性,促进电力产业又好又快地发展。
附件:获奖成果一览表。
◀钻井技术与装备▶连续管钻井肋式定向器执行机构偏置位移优化∗邢志晟1ꎬ2㊀孔璐琳3㊀祝传增4㊀郑硕1ꎬ5㊀焦滨海1ꎬ2㊀蒋世东1㊀李猛1(1 重庆科技学院石油与天然气工程学院㊀2 中国石油大学(北京)㊀3 中国石油勘探开发研究院4 中国石油国际勘探开发有限公司中油阿克纠宾油气股份公司㊀5 中海石油(中国)有限公司蓬勃作业公司)邢志晟ꎬ孔璐琳ꎬ祝传增ꎬ等.连续管钻井肋式定向器执行机构偏置位移优化[J].石油机械ꎬ2023ꎬ51(2):26-32XingZhishengꎬKongLulinꎬZhuChuanzengꎬetal.Researchonoptimizationofactuatoroffsetdisplacementofrib ̄typeorientationtoolforcoiledtubingdrilling[J].ChinaPetroleumMachineryꎬ2023ꎬ51(2):26-32.摘要:为了提高连续管肋式定向器井眼轨迹控制效果及定向效率ꎬ结合最小能量原则ꎬ建立了肋式定向器执行机构偏置位移矢量模型ꎮ根据旋转偏置位移理论对定向器的执行机构进行偏置位移矢量合成与分解㊁分位移矢量求解㊁工作过程与工具面数学关系分析ꎬ提出了分位移矢量计算方法ꎮ并结合实际工程中的设计要求ꎬ采用就近原则和最小能量原则进行三翼肋分位移矢量计算ꎮ综合考虑井眼扩大㊁实际钻进时定向器外套的转动等影响ꎬ建立了连续管定向器纠偏过程中 定向模式 及 保持模式 的肋位移控制方案ꎬ得到了肋位移变化的规律ꎮ研究结果表明:连续管钻井肋式定向器工作过程中ꎬ单肋位移的幅值决定了合位移的大小ꎻ在导向过程中ꎬ当三翼肋工具面角相隔120ʎ时ꎬ某些运动规律相同ꎻ连续管钻井进入斜直井段时ꎬ此时不存在工具面ꎬ此时属于 钻进模式 ꎬ各肋位移相同ꎮ所得结论可为连续管钻井肋式定向器导向控制提供理论基础ꎮ关键词:连续管钻井ꎻ肋式定向器ꎻ执行机构ꎻ偏置位移ꎻ优化研究中图分类号:TE921㊀文献标识码:A㊀DOI:10 16082/j cnki issn 1001-4578 2023 02 004ResearchonOptimizationofActuatorOffsetDisplacementofRib ̄TypeOrientationToolforCoiledTubingDrillingXingZhisheng1ꎬ2㊀KongLulin3㊀ZhuChuanzeng4㊀ZhengShuo1ꎬ5㊀JiaoBinhai1ꎬ2㊀JiangShidong1㊀LiMeng1(1 SchoolofPetroleumandNaturalGasEngineeringꎬChongqingUniversityofScienceandTechnologyꎻ2 ChinaUniversityofPe ̄troleum(Beijing)ꎻ3 PetroChinaResearchInstituteofPetroleumExplorationandDevelopmentꎻ4 InternationalExplorationandDevel ̄opmentCo.Ltd.ꎬCNPCAktubinOil&GasCo.Ltd.ꎻ5 PengboOperationCompanyofCNOOC(China)Co.ꎬLtd.)Abstract:Inordertoimprovethewelltrajectorycontrolperformanceandorientationefficiencyoftherib ̄typeorientationtoolforcoiledtubingdrillingꎬtheactuatoroffsetdisplacementvectormodeloftherib ̄typeorientationtoolwasestablishedfollowingtheprincipleofminimumenergy.Throughthecomposinganddecomposingoftheac ̄tuatoroffsetdisplacementꎬsolutionofthedisplacementcomponentvectorꎬandinvestigationonthemathematiccorrelationbetweentheoperationprocessandthetoolfaceaccordingtothetheoryofrotaryoffsetdisplacementꎬthecalculationmethodofthedisplacementcomponentvectorwasproposed.Moreoverꎬgiventheactualengineeringde ̄62 ㊀㊀㊀石㊀油㊀机㊀械CHINAPETROLEUMMACHINERY㊀2023年㊀第51卷㊀第2期∗基金项目:国家自然科学基金面上项目 耦合动力土反力作用的深水井口多轴疲劳理论和时变可靠度研究 (51974052)ꎻ重庆市基础研究与前沿探索项目 连续管钻井(塞)管柱底部激振波及规律和振扭耦合多轴疲劳研究 (cstc2019jcyj-msxmX0199)ꎻ全国大学生科技创新项目 连续管钻井定向器执行机构偏置位移优化及控制模拟研究 (202111551008)ꎻ重庆市教委科学技术项目 基于多源信息的连续管钻井定向器肋板轨迹规划及智能控制方法研究 (KJQN201901544)ꎮsignrequirementꎬthedisplacementcomponentvectorofthetriple ̄riborientationtoolwascalculatedfollowingtheprinciplesofproximityandminimumenergy.Theribdisplacementcontrolschemeswiththe directional and holding modesoftheorientationtoolduringdeviationcorrectionweredevelopedwithconsiderationtothebore ̄holeenlargementandtheeffectsofthetooljacketrotationduringdrillingꎬandthevariationpatternoftheribdis ̄placementwasobtained.Theresearchresultsshowthatthedisplacementmagnitudeofasingleribdeterminesthemagnitudeoftheresultantdisplacementꎬduringtheoperationoftherib ̄typeorientationtoolforcoiledtubingdrill ̄ingꎻthetripleribswithtoolfaceazimuthsgappedby120ʎsharesomeidenticalmotionpatternsduringsteeringꎻcoiledtubingdrillingofaslantholeisassociatedwithnotoolfaceandrepresentsthe drilling modecharacterizedbyidenticaldisplacementofeachrib.Theresearchresultsprovideatheoreticalbasisforsteeringcontroloftherib ̄typeorientationtoolforcoiledtubingdrilling.Keywords:coiledtubingdrillingꎻorientationtoolꎻactuatorꎻoffsetdisplacementꎻoptimizationresearch0㊀引㊀言连续管钻井技术(CTD)是国际公认的全新钻井模式ꎬ高难度前沿技术ꎬ具有钻柱连续㊁带压作业㊁不间断循环㊁易于预置光纤和电缆㊁适合欠平衡钻井和气体钻井等显著特征[1]ꎮCTD具有降本增效㊁减少污染㊁安全快捷等优势ꎬ克服了常规钻井技术和方式难以解决的问题ꎬ目前在北美已广泛应用于页岩油气㊁煤层气及致密油气等非常规油气藏的开发[2]㊀ꎮ页岩气钻井大多数为水平井ꎬ传统的井下马达导向为滑动钻进ꎬ连续管管柱不能旋转㊁单一滑动钻进㊁强度和疲劳寿命低于常规钻杆㊁大钻压施加受限㊁应对硬地层性能差㊁遇卡后解卡能力不足等局限性没有得到充分认识[3]ꎮ川渝地区页岩气资源丰富ꎬ但CTD在国内的应用仍处于起步阶段ꎮ不同于常规钻柱ꎬ连续管是柔性管柱ꎬ具有不可旋转性ꎬ必须应用井下定向器调整工具面方可达到有效钻进的目的[4]ꎮ第一㊁二代CTD定向器下接弯螺杆ꎬ所钻出的井壁粗糙ꎬ导致连续管在钻进过程中极易发生屈曲ꎬ从而影响钻压传递ꎬ导致钻进困难[5]ꎮCTD肋式定向器可解决这一问题ꎬ该定向器通过控制其关键机构(执行机构)输出偏置位移形成一定的工具面角ꎬ从而进行井眼轨迹控制ꎮ可见ꎬCTD定向器的执行机构偏置位移规律是连续管钻井井眼轨迹控制的理论基础[6-9]ꎮ目前国外连续管钻井定向装置可分为3大类ꎬ分别是液压定向器㊁电驱动定向器以及电液驱动定向器ꎮ国外的导向钻井技术在20世纪末已经相当成熟ꎬ该工具的相关技术长期被国际大型跨国油服公司所垄断ꎬ但其对我国实行了技术封锁ꎬ而国内连续管定向工具的研究才刚起步ꎮ近几年ꎬ虽然国内在该技术的许多领域已有突破性进展ꎬ但与国外技术尤其是新的旋转导向工具技术方面相比ꎬ仍有较大差距[10]ꎮ笔者在执行机构物理建模的基础之上ꎬ进行执行机构偏置位移优化研究ꎬ以期为定向器导向控制提供理论基础ꎮ1㊀定向器技术分析1 1㊀定向器结构连续管钻井定向器结构如图1所示ꎬ主要包括动力装置㊁控制装置和压力构件等ꎮ其中动力装置包括1个钻井泵ꎬ用于向压力构件提供高压流体ꎬ控制压力构件在正常和径向延伸位置间移动ꎻ还包括与控制装置相关联的电动机ꎮ控制装置安装在电动机的旋转机构中ꎬ钻井电动机包括动力组件和轴承组件ꎬ其中转向装置分布在轴承组件中ꎻ每个控制装置包含1个流体控制阀ꎬ以及控制每个阀的阀门制动器ꎮ压力构件包括1个活塞ꎬ活塞受到来自动力装置的高压流体作用ꎬ使肋构件发生径向移动ꎻ还包括与压力构件相关联的传感器ꎬ用于接收和转化压力构件与参考位置之间位置关系的信号ꎮ1 2㊀工作原理在钻井过程中ꎬ电动机为钻头提供旋转动力ꎬ电动机和钻头之间的轴承组件向连接钻头的钻杆提供横向和轴向支撑ꎮ转向装置分布在钻井马达或轴承组件中ꎬ在钻井过程中提供方向控制ꎮ转向装置是安装在轴承箱外表面的多个肋ꎮ每个肋在外壳的正常或折叠位置与径向延伸位置之间移动ꎮ当处于延伸位置时ꎬ每个肋向井筒内部施加压力ꎮ为了改变钻井方向ꎬ激活1个或多个肋ꎬ即在每个肋上施加所需的力向外延伸ꎮ每个肋上的力的大小是独立设置和控制的ꎬ肋在钻头上产生一定的偏置力ꎬ接触井壁后ꎬ靠井壁的反作用力使钻头产生侧向切削722023年㊀第51卷㊀第2期邢志晟ꎬ等:连续管钻井肋式定向器执行机构偏置位移优化㊀㊀㊀力ꎬ从而实现导向[11]ꎮ动力装置分布在包含多个传感器的轴承组件中ꎬ传感器用于确定每个肋施加在井筒上的力ꎮ动力装置响应传感器后ꎬ通过电气控制单元或电路控制动力单元激活1个或多个肋板ꎬ从而控制肋的伸缩ꎮ控制电路可安装在钻井电动机上方或钻井电动机旋转部分的适当位置ꎮ对于小井眼ꎬ万向轴接头分布在转向装置的支座上ꎬ提供转向功能ꎮ1 钻头ꎻ2 肋板ꎻ3 压力构件ꎻ4 控制装置ꎻ5 壳体ꎻ6 联轴器ꎻ7 空心驱动轴ꎻ8 长轴ꎻ9 钻井马达ꎻ10 转子ꎻ11 定子ꎮ图1㊀连续管钻井定向器结构示意图Fig 1㊀Schematicstructureoftherib ̄typeorientationtoolforcoiledtubingdrilling2㊀合位移矢量的计算2 1㊀肋位移基准确定以连续管定向器中心轴线与井眼中心轴线重合的初始位置为基准(见图2a)ꎬ规定此时各单肋位移为0ꎻ若连续管定向器各肋支撑在井壁ꎬ且位移相等ꎬ此时为保持钻进模式(见图2b)ꎻ若各肋位移不全相等ꎬ则称为定向模式(见图2c)ꎮ假设井壁呈刚性ꎬ则单肋最大伸缩位移量为:|Ω|max=κdh-dor(1)式中:|Ωmax为单肋的最大工作位移ꎬmꎻdh为井眼直径ꎬmꎻdor为定向器外径ꎬmꎻκ为井眼扩大系数ꎬ无因次ꎮ图2㊀连续管定向器肋位移示意图Fig 2㊀Schematicribdisplacementoftherib ̄typeorientationtool2 2㊀合位移矢量方向的确定在连续管定向器各肋所在的共平面建立平面直角坐标系XOYꎬΩ=OGң为合位移矢量ꎬΩ1=OG1ң㊁Ω2=OG2ң和Ω3=OG3ң分别为3个分位移矢量(见图3a)ꎬ合位移矢量Ω的取值范围为正六边形ꎬ正六边形与外圆(井筒)之间的区域为无效控制区域(见图3b黄色区域)ꎬ若各肋周向位置发生转动(受摩擦扭矩影响)ꎬ则可形成内外圆之间的无效控制区域(见图3b红色+黄色区域)[12-13]ꎮ图3㊀连续管定向器合位移矢量解析Fig 3㊀Analysisoftheresultantdisplacementvectoroftherib ̄typeorientationtool82 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第2期通过上述分析ꎬ最大可使用合位移矢量并不是单肋最大工作位移Ωmaxꎮ通过位移合成原理及平面几何分析可得最大可使用合位移矢量幅值为:Γmax=㊀32Ωmax(2)式中:Γmax为定向器最大可使用合位移幅值ꎬmꎮ如图3a所示ꎬφ0为1#肋初始工具面角(0ʎ~360ʎ)ꎬ合位移矢量OGң的方向即连续管井下工具组合的工具面角ω的方向ꎮ若1#肋位置确定ꎬ即1#肋工具面角φ0确定ꎬ则2#㊁3#肋工具面角也可以确定ꎮ那么工具面角ω与各肋位移关系可表示为[14]:cosω=ΩYΩ=Ω1cosφ0+Ω2cosφ0+120ʎ()+Ω3cosφ0+240ʎ()㊀ΩX2+ΩY2(3)式中:φ0为1#肋的初始工具面角ꎬ(ʎ)ꎻω为井下工具的工具面角ꎬ(ʎ)(|Ω|ʂ0)ꎻ|Ω|=0时为保持钻进模式ꎬ不存在工具面角ꎮ若已知设计纠偏轨道工具面角ωꎬ则根据式(3)可确定合位移矢量Ω的方向ꎮ2 3㊀合位移矢量大小的确定定向器肋合位移与井眼中心线的几何关系如图4所示ꎮ由设计纠偏轨道圆心角θꎬ可确定连续管定向器所需要的造斜率ρꎮ然后ꎬ能够得到定向器肋合位移矢量Ω的大小ꎮ图4㊀定向器肋合位移与井眼中心线的几何关系Fig 4㊀Geometricrelationshipbetweentheribdisplacementoftherib ̄typeorientationtoolandthewellboreaxisθ=ρL/30(4)ρ=360ˑ30πcosπ-β2æèçöø÷M12(5)sinβ=ΩM12(6)式中:θ为设计纠偏轨道圆心角ꎬ(ʎ)ꎻρ为连续管定向器每30m的造斜率ꎬ(ʎ)ꎻL为井段长ꎬmꎻβ为井眼中心线与M12的夹角ꎬ(ʎ)ꎻM12为接触点1㊁2之间的长度ꎬmꎮ3㊀定向器肋合位移矢量控制在确定合位移矢量Ω的大小和方向之后ꎬ根据式(3)可求解3肋的分位移(Ω1㊁Ω2㊁Ω3)ꎬ可整理为:Ωsinω=Ω1sinφ0+Ω2sinφ0+120ʎ()+Ω3sinφ0+240ʎ()Ωcosω=Ω1cosφ0+Ω2cosφ0+120ʎ()+Ω3cosφ0+240ʎ(){(7)㊀㊀方程组(7)仅有2个方程ꎬ但有3个未知数Ω1㊁Ω2和Ω3ꎬ故此方程有n个解(nңɕ)ꎮ在连续管定向钻井纠偏过程中ꎬ为保证连续管钻井导向高效ꎬ定向器需按照最小能量原则进行纠偏[15-16]ꎮ最小能量原则是指按图5等分3个区域ꎬ令距离合位移矢量Ω最近的肋的分位移为0(此肋处于最不利位置)ꎬ然后可再根据方程组(7)得到另外2个分位移矢量解ꎮ例如ꎬ若合位移矢量Ω处于第Ⅱ区域时ꎬ定向器各肋分位移可表示为(Ω1ꎬ0ꎬΩ3)[17]ꎮ根据前文中得到的井眼轨道工具面角ω可得图5㊀定向器3肋最小能量原则区域划分方法Fig 5㊀Zonedivisionforthetripleribsoftheorientation㊀㊀toolfollowingtheminimumenergyprinciple92 2023年㊀第51卷㊀第2期邢志晟ꎬ等:连续管钻井肋式定向器执行机构偏置位移优化㊀㊀㊀定向器肋合位移矢量的方向ꎬ根据设计井眼轨道圆弧段圆心角θ可得连续管定向器肋合位移矢量的大小Ω=Γ(ΓɤΓmax)ꎬ故依据最小能量原则和方程组(7)ꎬ可得连续管钻井纠偏过程中定向器肋位移控制方案ꎮ当0ɤφ0<60ʎ时ꎬ计算式如下ꎮ(1)当300ʎɤ(ω-φ0)ɤ(360ʎ-φ0)或-φ0ɤ(ω-φ0)<60ʎ时ꎬ合位移矢量处于Ⅰ区域ꎬ其中(ω-φ0)为工具面角ω所在位置逆时针向1#肋转过的角度ꎬ此时根据最小能量原则ꎬ连续管定向器1#肋位移为0ꎬ根据方程组(7)可得:ΓcosωΓsinωæèçöø÷=cosφ0cosφ0+120ʎ()cosφ0+240ʎ()cosφ0sinφ0+120ʎ()sinφ0+240ʎ()æèçöø÷0Ω2Ω3æèçççöø÷÷÷(8)㊀㊀将式(4)~式(6)代入式(8)进行求解可得:Ω1Ω2Ω3æèçççöø÷÷÷=02㊀3sinω-φ0-60ʎ()-2㊀3sinω-φ0+60ʎ()æèççççççöø÷÷÷÷÷÷ˑM12sin180ʎ-2arccosπθM12360Læèçöø÷(9)㊀㊀(2)当60ʎɤ(ω-φ0)<180ʎ时ꎬ合位移矢量处于Ⅱ区域ꎬ具体如图5所示ꎬ此时连续管定向器2#肋的位移为0ꎬ于是根据方程组(7)可进行如下计算:ΓcosωΓsinωæèçöø÷=cosφ0cosφ0+120ʎ()cosφ0+240ʎ()cosφ0sinφ0+120ʎ()sinφ0+240ʎ()æèçöø÷Ω10Ω3æèçççöø÷÷÷(10)㊀㊀结合式(4)~式(6)对式(10)进行求解可得:Ω1Ω2Ω3æèçççöø÷÷÷=2㊀3sin60ʎ-ω-φ0()[]0-2㊀3sinω-φ0()æèççççççöø÷÷÷÷÷÷ˑM12sin180ʎ-2arccosπθM12360Læèçöø÷(11)㊀㊀(3)当180ʎɤ(ω-φ0)<300ʎ时ꎬ合位移矢量处于Ⅲ区域ꎬ具体如图5所示ꎬ此时连续管定向器3#肋的位移为0ꎬ于是根据方程组(7)可进行如下计算:ΓcosωΓsinωæèçöø÷=cosφ0cosφ0+120ʎ()cosφ0+240ʎ()cosφ0sinφ0+120ʎ()sinφ0+240ʎ()æèçöø÷Ω1Ω20æèçççöø÷÷÷(12)㊀㊀结合式(4)~式(6)ꎬ对式(12)进行求解可得:Ω1Ω2Ω3æèçççöø÷÷÷=2㊀3sin60ʎ+ω-φ0()-2㊀3sinω-φ0()0æèççççççöø÷÷÷÷÷÷ˑM12sin180ʎ-2arccosπθM12360Læèçöø÷(13)㊀㊀依据上述肋位移控制模型推导方法ꎬ得到1#肋的初始工具面角φ0在0ʎ~360ʎ范围内的肋位移控制方案如表1所示ꎮ表1 肋位移控制方案4㊀肋位移变化规律根据式(9)㊁式(11)和式(13)ꎬ可得连续管定向器各肋位移随工具面角变化规律ꎬ如图6所03 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第2期示ꎮ由图6a~图6c可得到合位移Γ1=10mmꎻ由图6d~图6f可得到的合位移Γ2=15mmꎮ(1)以图6a为例ꎬ当固定1#肋工具面角为30ʎ时ꎬ在轨迹的工具面角[0ꎬ90ʎ]范围内ꎬ1#肋处于不利地位ꎬ1#肋位移为0ꎬ2#肋和3#肋均外伸ꎬ且随总工具面角增加ꎬ2#肋位移减小ꎬ3#肋位移先增加后减小ꎻ在总工具面角[90ʎꎬ210ʎ]范围内ꎬ2#肋处于不利地位ꎬ2#肋位移为0ꎬ1#肋和3#肋均外伸ꎬ且随总工具面角增加ꎬ2#肋位移先增加后减小ꎬ3#肋位移先减小后增加ꎻ在[210ʎꎬ330ʎ]范围内ꎬ3#肋处于不利地位ꎬ3#肋位移为0ꎬ1#肋和2#肋均外伸ꎬ且随总工具面角增加ꎬ1#肋位移先增加后减小ꎬ2#肋位移先减小后增加ꎻ在[330ʎꎬ360ʎ]范围内ꎬ1#肋处于不利地位ꎬ1#肋位移为0ꎬ2#肋和3#肋均外伸ꎬ且随总工具面角增加ꎬ2#肋位移增加ꎬ3#肋位移增加ꎮ(2)由图6a~图6c可知ꎬ若合位移Γ1为10mmꎬ单肋位移的最大幅值需为11 55mmꎻ从图6d~图6f可知ꎬ若合位移Γ2为15mmꎬ单肋位移的最大幅值需为17 32mmꎻ故单肋位移的幅值决定了合位移的大小ꎮ(3)由图6a㊁图6c㊁图6e可知ꎬ1#肋工具面角相隔120ʎ时ꎬ某些肋运动规律相同ꎮ例如ꎬ定向器1#肋工具面角分别为30ʎ㊁150ʎ㊁270ʎ时ꎬ[Ω1-30ʎꎬΩ3-150ʎꎬΩ2-270ʎ]位移运动规律相同ꎬ同样有[Ω2-30ʎꎬΩ1-150ʎꎬΩ3-270ʎ]㊁[Ω3-30ʎꎬΩ2-150ʎꎬΩ1-270ʎ]位移运动规律相同ꎮ(4)从图6f可知ꎬ在设计轨道工具面角240ʎ之后ꎬ连续管钻井进入斜直井段ꎬ不存在工具面角ꎬ连续管定向器为保持钻进模式ꎬ各肋位移相等ꎬ根据式(1)ꎬ|Ω1|=|Ω2|=|Ω3|=κdh-dorꎻ此时合位移大小为0ꎮ图6㊀定向器各肋位移随工具面角变化规律Fig 6㊀Displacementvs.toolfaceangleforeachriboftheorientationtool5㊀结㊀论(1)将连续管钻井肋式定向器偏置位移矢量控制简化为控制平面内位移矢量的合成与分解ꎬ指出分位移矢量求解时解的多样性ꎬ在三翼肋定向器实际工作过程中ꎬ使用就近原则和最小能量原则进行分位移矢量计算并实现钻井过程中的导向功能ꎬ建立了连续管钻井定向器导向过程中定向模式及保持模式的肋位移控制方案ꎮ(2)通过对单肋不同工具面位移矢量分析ꎬ单肋位移的幅值决定了合位移的大小ꎮ肋工具面角相隔120ʎ时ꎬ某些肋运动规律相同ꎻ连续管钻井进入斜直井段ꎬ不存在工具面角ꎬ连续管定向器为保持钻进模式ꎬ各肋位移相等ꎮ参㊀考㊀文㊀献[1]㊀贺会群ꎬ熊革ꎬ李梅ꎬ等.LZ580-73T连续管钻机的研制[J].石油机械ꎬ2012ꎬ40(11):1-4.HEHQꎬXIONGGꎬLIMꎬetal.Developmentofthe13 2023年㊀第51卷㊀第2期邢志晟ꎬ等:连续管钻井肋式定向器执行机构偏置位移优化㊀㊀㊀LZ580-73TCTdrillingrig[J].ChinaPetroleumMa ̄chineryꎬ2012ꎬ40(11):1-4.[2]㊀李猛ꎬ贺会群ꎬ辛永安ꎬ等.基于概率理论的连续管钻井调整工具面扭矩预测方法研究[J].长江大学学报(自科版)ꎬ2016ꎬ13(10):61-71.LIMꎬHEHQꎬXINYAꎬetal.TorquecalculationmethodforadjustingtoolfaceduringCTDbasedonprobabilitytheory[J].JournalofYangtzeUniversity(NaturalScienceEdition)ꎬ2016ꎬ13(10):61-71. [3]㊀贺会群ꎬ熊革ꎬ刘寿军ꎬ等.我国连续管钻井技术的十年攻关与实践[J].石油机械ꎬ2019ꎬ47(7):1-8.HEHQꎬXIONGGꎬLIUSJꎬetal.TenyearsofkeyproblemstacklingandpracticeofcoiledtubingdrillingtechnologyinChina[J].ChinaPetroleumMachineryꎬ2019ꎬ47(7):1-8.[4]㊀LIMꎬSUKHꎬWANLF.Uncertaintyanalysisforhydrauliccylinderpressurecalculationoforienterincoiledtubingdrilling[J].JournalofEngineeringRe ̄searchꎬ2019ꎬ7(1):1-16.[5]㊀KRUEGERSꎬPRIDATL.Twentyyearsofsuccessfulcoiledtubingre ̄entrydrillingwithe ̄lineBHAsystems ̄improvingefficiencyandeconomicsinmaturingfieldsworldwide[C]ʊSPE/ICoTACoiledTubingandWellInterventionConferenceandExhibition.HoustonꎬTex ̄asꎬUSA:SPEꎬ2016:SPE179046-MS. [6]㊀SCHULZE ̄RIEGERTRꎬBAGHERIMꎬKROSCHEM.Multiple ̄objectiveoptimizationappliedtowellpathde ̄signundergeologicaluncertainty[C]ʊSPEReservoirSimulationSymposium.TheWoodlandsꎬTexasꎬUSA:SPEꎬ2011:SPE141712-MS.[7]㊀MATHEUSJꎬNAGANATHANS.Drillingautomation:noveltrajectorycontrolalgorithmsforRSS[C]ʊIADC/SPEDrillingConferenceandExhibition.NewOrleansꎬLouisianaꎬUSA:SPEꎬ2010:SPE127925-MS. [8]㊀VLEMMIXSꎬJOOSTENGJPꎬBROUWERDRꎬetal.Adjoint ̄basedwelltrajectoryoptimizationinathinoilrim[C]ʊEUROPEC/EAGEConferenceandExhi ̄bition.AmsterdamꎬTheNetherlands:SPEꎬ2009:SPE121891-MS.[9]㊀HIMMELBERGNꎬECKERTA.Wellboretrajectoryplanningforcomplexstressstates[C]ʊ47thU.S.RockMechanics/GeomechanicsSymposium.SanFran ̄ciscoꎬCalifornia:ARMAꎬ2013:ARMA2013-316. [10]㊀冯定ꎬ王鹏ꎬ张红ꎬ等.旋转导向工具研究现状及发展趋势[J].石油机械ꎬ2021ꎬ49(7):8-15.FENGDꎬWANGPꎬZHANGHꎬetal.Researchstatusanddevelopmenttrendofrotarysteerablesystemtool[J].ChinaPetroleumMachineryꎬ2021ꎬ49(7):8-15.[11]㊀赵金洲ꎬ孙铭新.旋转导向钻井系统的工作方式分析[J].石油机械ꎬ2004ꎬ32(6):73-75.ZHAOJZꎬSUNMX.Workingmodeanalysisofrota ̄rysteerablesystem[J].ChinaPetroleumMachineryꎬ2004ꎬ32(6):73-75.[12]㊀LICNꎬSAMUELR.BucklingofconcentricstringPipe ̄in ̄Pipe[C]ʊSPEAnnualTechnicalConferenceandExhibition.SanAntonio.TexasꎬUSA:SPE187455-MS.[13]㊀BOONSRIK.Torquesimulationinthewellplanningprocess[C]ʊIADC/SPEAsiaPacificDrillingTech ̄nologyConference.BangkokꎬThailand:IADC/SPEꎬ2014:SPE170500-MS.[14]㊀胡亮ꎬ高德利.连续管钻定向井工具面角调整方法研究[J].石油钻探技术ꎬ2015ꎬ43(2):50-53.HULꎬGAODL.StudyonamethodforToolfacere ̄orientationwithcoiledtubingdrilling[J].PetroleumDrillingTechniquesꎬ2015ꎬ43(2):50-53. [15]㊀李猛ꎬ贺会群ꎬ辛永安ꎬ等.连续管钻井电液定向装置工具面调整方法[J].石油钻探技术ꎬ2016ꎬ44(6):48-54.LIMꎬHEHQꎬXINYAꎬetal.Toolfaceorienta ̄tionbyusinganelectric ̄hydraulicorienterduringcoiledtubingdrilling[J].PetroleumDrillingTech ̄niquesꎬ2016ꎬ44(6):48-54.[16]㊀李猛ꎬ贺会群ꎬ张云飞.连续管钻井电液定向器工具面角度调整分析[J].石油机械ꎬ2016ꎬ44(5):1-7.LIMꎬHEHQꎬZHANGYF.Analysisonelectro ̄hydraulicorientationtoolfaceangleadjustmentforcoiledtubingdirectionaldrilling[J].ChinaPetroleumMachineryꎬ2016ꎬ44(5):1-7.[17]㊀程载斌ꎬ姜伟ꎬ蒋世全ꎬ等.旋转导向系统三翼肋偏置位移矢量控制方案[J].石油学报ꎬ2010ꎬ31(4):676-679ꎬ683.CHENGZBꎬJIANGWꎬJIANGSQꎬetal.Controlschemefordisplacementvectorofthree ̄padbiasingro ̄tarysteerablesystem[J].ActaPetroleiSinicaꎬ2010ꎬ31(4):676-679ꎬ683.㊀㊀第一作者简介:邢志晟ꎬ生于2000年ꎬ中国石油大学(北京)在读硕士研究生ꎬ研究方向为石油与天然气工程ꎮ通信作者:李猛ꎬE ̄mail:limengti06@126 comꎮ㊀收稿日期:2022-08-17(本文编辑㊀南丽华)23 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第2期。
2020年10月第36卷第10期石油工业技术监督Technology Supervision in Petroleum IndustryOct.2020Vol.36No.102021年4月第37卷第4期Apr.2021 Vol.37No.4海上油田M井井筒完整性失效分析及处理方法柳海啸1,徐振东1,李文涛1,刘海龙2,乔中山21.中海石油(中国)有限公司蓬勃作业公司(天津300459)2.中海石油(中国)有限公司天津分公司(天津300459)摘要随着油田开发时间的增长,油水井井筒完整性问题越来越突出,环空带压问题越来越普遍,对安全生产造成了严重的威胁。
介绍了海上油田M井井筒完整性管理及实践方法,对问题井进行定量分析,针对油井B环空带压问题,创新采用罐装泵系统,重新构建两道完整的井下屏障,以较低的成本满足井筒完整性管理要求,恢复油井正常生产,达到良好的经济效益。
关键词井筒完整性;环空带压;井筒屏障;罐装泵Wellbore Integrity Failure Analysis and Handling Method of Well M in an Offshore Oilfield Liu Haixiao1,Xu Zhendong1,Li Wentao1,Liu Hailong2,Qiao Zhongshan21.Pengbo Operation Company,CNOOC(China)Co.,Ltd.(Tianjin300459,China)2.Tianjin Branch,CNOOC(China)Co.,Ltd.(Tianjin300459,China)Abstract With the extension of oilfield development time,the problem of wellbore integrity of oil and water wells is becoming more and more prominent,and the problem of annulus pressure is becoming more and more common,which poses a serious threat to the safety of production.This paper mainly introduces the wellbore integrity management and practice means of M well in an offshore oilfield,and makes quantitative analysis on the problem wells.Aiming at the problem of annulus pressure in well B,two complete downhole barriers are reconstructed by using innovatively canned pump system,and the requirements of wellbore integrity management are met with low cost,the normal production of oil wells is restored,and good economic benefits are achieved.Key words wellbore integrity;annulus pressure;wellbore barrier;canned pump柳海啸,徐振东,李文涛,等.海上油田M井井筒完整性失效分析及处理方法[J].石油工业技术监督,2021,37(4):36-39.Liu Haixiao,Xu Zhendong,Li Wentao,et al.Wellbore integrity failure analysis and handling method of well M in an offshore oil⁃field[J].Technology Supervision in Petroleum Industry,2021,37(4):36-39.0引言在石油的开采开发过程中,生产安全十分重要,一旦出现不可控制的安全事故,会给人员、环境及财产带来重大的损失。
第42卷第2期2003年6月石 油 物 探GE OPHY SIC A L PROSPECTI NG FOR PETRO LE UMV ol.42,N o.2Jun.,2003文章编号:100021441(2003)022*******地震波场数值模拟方法张永刚(中国石油化工股份有限公司科技发展部,北京100029)摘要:简要总结了地震波场数值模拟的各种方法的基本原理及其主要特点,对最近在该领域出现的一些方法和研究结果做了简要的阐述,并对比了各种方法的优缺点。
在此基础上提出了运用波动方程数值模拟作为基础,结合射线方法辅助识别波场类型,用于分析异常波的产生机理和出现特点的基本思想,这对复杂条件下的地震勘探具有指导和借鉴意义。
关键词:地震波场;数值模拟;射线追踪;有限元;伪谱法;正演模拟中图分类号:P63114+1 文献标识码:AOn numerical simulations of seismic w avefieldZhang Y onggang(Department of Science and T echnology Development,SI NOPEC,Beijing100029,China)Abstract:This paper reviews the principles and characteristics of various numerical simulations of seismic wavefield,and com2 pares the merits and defects of the simulations.S ome newly emerged methods and results are briefly discussed.The author pro2 poses to study the generation mechanism and characteristics of abnormal waves based on wave equation numerical simulation supplemented by ray tracing.K ey w ords:seismic wavefield;numerical simulation;ray tracing;finite element;pseudo2spectrum;forward m odeling 地震波场数值模拟是研究复杂地区地震资料采集、处理和解释的有效辅助手段,地震波场数值模拟的主要方法包括2大类,即波动方程法和几何射线法。