大学物理规范作业A(本一)振动解答
- 格式:ppt
- 大小:433.00 KB
- 文档页数:4
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为: (A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >'[ ]6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
大学物理振动习题含答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) (B) /2 (C) 0 (D) [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(t + )。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为: (A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ] 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 (B) ω2 (C) 2/ω (D) /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ]6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
《大学物理A Ⅰ》机械振动习题、答案及解法2010一、 选择题1.下列四种运动(忽略阻力)中哪一种是简谐振动?(C )(A)小球在地面上作完全弹性的上下跳动(B)细线悬挂一小球在竖直平面上作大角度的来回摆动(C)浮在水里的一均匀矩形木块,将它部分按入水中,然后松开,使木块上下浮动 (D)浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动 参考答案:A 中小球没有受到回复力的作用;B 中由于是大角度,所以θ与θsin 不能近似相等,不能看做简谐振动; D 中球形木块所受力F 与位移x 不成线性关系,故不是简谐振动。
2.如图1所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动,若从松手时开始计时,则该弹簧振子的初相位为(D )(A) 0 (B) 2π (C)2π-(D) π 参考答案:0=t A x -=0 00〉v 则πϕ=3.一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,其振动周期为T 。
若将此轻弹簧分割成三等份,将一质量为m 2的物体挂在分割后的一根弹簧上,则此弹簧振子的周期应为(B )(A)T 63 (B)T 36 (C)T2 (D)T 6参考答案:km T π2=T k m T 36322=='π4.两相同的轻弹簧各系一物体(质量分别为1m 、2m )作简谐振动(振幅分别为1A 、2A ),问下列哪一种情况两振动周期不同(B ) (A )上振动动,另一个在竖直方向一个在光滑水平面上振、,2121A A m m == (B )作水平振动两个都在光滑的平面上、,222121A A m m == (C )作水平振动两个都在光滑的平面上、,22121A A m m ==(D )竖直振动动,另一个在月球上作一个在地球上作竖直振、,2121A A m m ==参考答案:因为kmT π2= 与振幅无关故答案为B5.一个质点做简谐振动,已知质点由平衡位置运动到二分之一最大位移处所需要的最短时间为0t ,则该质点的振动周期T 应为[B ](A)04t (B) 012t (C) 06t (D) 08t参考答案:()2sin A t A =ω 6320πππω=-=t 06t πω=0012622t t T ===ππωπ6.已知月球上的重力加速度是地球的61,若一个单摆(只考虑小角度摆动)在地球上的振动周期为T ,将该单摆拿到月球上去,其振动周期应为(C ) (A)T 6 (B)6T (C)T 6 (D)6T参考答案:gl T π20= 单摆拿到月球上,062662T g l g l T =⋅==ππ7.一简谐振动的旋转矢量图如图2所示,设图中圆的半径为R ,则该简谐振动的振动方程为(A ) (A)⎪⎭⎫ ⎝⎛+=4cos ππt R x(B) ⎪⎭⎫ ⎝⎛+=4sin ππt R x(C)⎪⎭⎫ ⎝⎛-=4cos ππt R x (D) ⎪⎭⎫ ⎝⎛+=42cos ππt R x参考答案: 由图知,初相为4π,在t 之间内转过t π, 0=t A x 220= 00〈v 则 4πϕ= 8.已知某简谐振动的振动曲线如图3所示,位移的单位为米,时间单位为秒,则此简谐振动的振动方程为(C ) (A)()SI 322411cos 10⎪⎭⎫ ⎝⎛+=ππt x(B)()SI 67247cos 10⎪⎭⎫ ⎝⎛-=ππt x(C)()SI 32247cos 10⎪⎭⎫ ⎝⎛-=ππt x(D) ()SI 322411cos 10⎪⎭⎫ ⎝⎛-=ππt x参考答案:由图知,振幅m 10=A ,0=t 20A x -= 00〉v 向正向运动则 32πϕ-=9.某弹簧振子的振动曲线如图4所示,则由图可确定s 2=t 时,振子的速66-度为(A ) (A) 1s m 3-⋅π (B) 1s m 3-⋅-π(C)1s m 3-⋅ (D) 1s m 3-⋅-参考答案:)22cos(6ππ+=t x)22sin(3πππ+-=t v)s m (3)23sin(3)2(1-⋅=-=πππv10.一质量为m 的物体与一个劲度系数为k 的轻弹簧组成弹簧振子,当其振幅为A 时,该弹簧振子的总能量为E 。
第十二章 机械振动简谐振动12.1 一倔强系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为1T ,若将此弹簧截去一半的长度,下端挂一质量为12m 的物体,则系统振动周期2T 等于 (A )21T ;(B )1T ;(C )1T /2;(D )1T /2 ;(E )1T /4. [ ] 答:(C )分析:一根弹簧,弹性系数为k ,把它截短以后,k 不是减小了,而是增大了。
弹簧的弹力大小取决于弹簧的形变,在伸长相同的长度x 的情况下,弹簧越短,其变形越大,弹力f 也越大。
而胡克定律为:f kx =,即 fk x=,因此弹簧变短后弹性系数k 增大。
12T = 22k k =,下端挂一质量为12m 的物体,则系统振动周期2T 为: 2T 1112222T ⎛=== ⎝ 12.2 图(下左)中三条曲线分别表示简谐振动中的位移x ,速度v 和加速度a ,下列说法中那一个是正确的?(A )曲线3、1、2分别表示x 、v 、a 曲线; (B )曲线2、1、3分别表示x 、v 、a 曲线; (C )曲线1、3、2分别表示x 、v 、a 曲线; (D )曲线2、3、1分别表示x 、v 、a 曲线; (E )曲线1、2、3分别表示x 、v 、a 曲线.第12. 3题图v (a)(b)t答:(E )分析:位移x 与加速度a 的曲线时刻都是反相的,从图上看曲线1、3反相,曲线2是速度v 曲线;另外,速度比位移的位相超前2π,加速度比速度的位相超前2π,从图上看曲线3比2超前了2π,3是加速度曲线;曲线2比1超前了2π,1是位移曲线12.3 在t =0时,周期为T 、振幅为A 的单摆分别处于图(上右)(a)、(b)、(c)三种状态,若选单摆的平衡位置为x 轴的原点,x 轴正向指向右方,则单摆作小角度摆动的振动表达式分别为(1) ; (2) ; (3) . 答:(1)X =A cos (t T π2-2π) (2)X =A cos (t T π2+2π) (3)X =A cos (t Tπ2+π). 分析:关键是写出初位相,用旋转矢量法最方便:ωx xx(a )φ= -π/2ω ω(b )φ= π/2(c )φ= π12.4 设振动周期为T ,则a 和b 处两振动的时间差t ∆=____________。
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
1. 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ⨯10-2 m 。
假如使物体上下振动,且规定向下为正方向。
〔1〕t =0时,物体在平衡位置上方8.0 ⨯10-2 m处,由静止开始向下运动,求运动方程。
〔2〕t = 0时,物体在平衡位置并以0.60m/s 的速度向上运动,求运动方程。
题1分析:求运动方程,也就是要确定振动的三个特征物理量A 、ω,和ϕ。
其中振动的角频率是由弹簧振子系统的固有性质〔振子质量m 与弹簧劲度系数k 〕决定的,即m k /=ω,k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相ϕ需要根据初始条件确定。
解:物体受力平衡时,弹性力F 与重力P 的大小相等,即F = mg 。
而此时弹簧的伸长量m l 2108.9-⨯=∆。
如此弹簧的劲度系数l mg l F k ∆=∆=//。
系统作简谐运动的角频率为1s 10//-=∆==l g m k ω〔1〕设系统平衡时,物体所在处为坐标原点,向下为x 轴正向。
由初始条件t = 0时,m x 210100.8-⨯=,010=v 可得振幅m 100.8)/(2210102-⨯=+=ωv x A ;应用旋转矢量法可确定初相πϕ=1。
如此运动方程为])s 10cos[()m 100.8(121π+⨯=--t x〔2〕t = 0时,020=x ,120s m 6.0-⋅=v ,同理可得m 100.6)/(22202022-⨯=+=ωv x A ,2/2πϕ=;如此运动方程为]5.0)s 10cos[()m 100.6(122π+⨯=--t x2.某振动质点的x -t 曲线如下列图,试求:〔1〕运动方程;〔2〕点P 对应的相位;〔3〕到达点P 相应位置所需要的时间。
题2分析:由运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题。
此题就是要通过x -t 图线确定振动的三个特征量量A 、ω,和0ϕ,从而写出运动方程。
曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比拟方便。
《大学物理(下)》作业 No.1 机械振动(电气、计算机、詹班)班级 学号 姓名 成绩一 选择题1. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A). (B)/2. (C) 0 . (D).[ C ][参考解答] 开始计时时,位移达到最大值。
2. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A) )3232cos(2π+π=t x .(B) )3232cos(2π-π=t x .(C) )3234cos(2π+π=t x .(D) )3234cos(2π-π=t x .(E) )4134cos(2π-π=t x .[ C ][参考解答] A=2 cm ,由旋转矢量法可得:3/20πϕ==t ,πϕ21==t ,s rad t /4314/3ππϕω==∆∆=,旋转矢量图: 3.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 (A )7/16 (B )9/16t (s)O-1 -212-2-1Ot=0t=1(C )11/16 (D )13/16 (E )15/16[ E ][参考解答] 4/)cos(A t A x =+=ϕω,16/15)(sin ,4/1)cos(2=+=+ϕωϕωt t 即,1615)(sin max2max k k k E t E E =+=ϕω 4.图中所画的是两个简谐振动的振动曲线,若这两个简谐振动可叠加,则合成的余弦振动的初相位为:(A )2π(B )π(C )23π(D )0[ B ][参考解答] t=0时刻的旋转矢量图:二 填空题1.一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为x 0,此振子自由振动的周期T = g x /20π.[参考解答] 受力分析如右图,以平衡位置为原点,向下为x轴正方向,有:22/22)/(dtXd m kX k mg x k mg kx dt xd m k mg x X =-=--=+-=-=令 对坐标X ,其运动为简谐运动, 其角频率满足:,mk =2ωg x T /2/20πωπ==πA/2-A A 合mg F kox2. 一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有正最大值的那一时刻为t = 0,则振动表达式为 )()2325cos(2cm t x π+=. [参考解答] s rad cm A A v m /5.2,2,=∴==ωωt =0时,质点通过平衡位置向正方向运动,初相为:230πϕ=3.一弹簧简谐振子的振动曲线如图所示,振子处在位移为零,速度为-ωA ,加速度为零和弹性力为零的状态,对应于曲线上的 b, f 点,振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应于曲线上的 a, e 点。
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。