近世代数-4—6结合律、交换律及分配律
- 格式:doc
- 大小:568.50 KB
- 文档页数:10
《近世代数》课程教案第一章基本概念教学目的与教学要求:掌握集合元素、子集、真子集。
集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。
理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n的剩余类。
教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n的剩余类。
教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n的剩余类.教学措施:网络远程。
教学时数:8学时.教学过程:§1 集合定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。
集合中的每个事物叫做这个集合的元素(简称元)。
定义:一个没有元素的集合叫做空集,记为∅,且∅是任一集合的子集。
(1)集合的要素:确定性、相异性、无序性。
(2)集合表示:习惯上用大写拉丁字母A ,B ,C …表示集合,习惯上用小写拉丁字母a ,b ,c …表示集合中的元素. 若a 是集合A 中的元素,则记为A a A a ∉∈否则记为,. 表示集合通常有三种方法: 1、枚举法(列举法):例:A ={1,2,3,4},B ={1,2,3,…,100}. 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。
近世代数基础知识点总结近世代数是数学中的一个重要分支,它研究的是代数结构及其性质。
本文将对近世代数的基础知识点进行总结,包括群、环、域和向量空间等的定义和性质。
一、群群是近世代数的基础概念,它是一个集合和一个二元运算构成的代数结构。
群的定义包括四个要素:集合、封闭性、结合律和单位元,还需要满足可逆性。
群的性质有唯一性、消去律、幂等性和逆元的唯一性等。
二、环环是在群的基础上引入了乘法运算的代数结构。
环的定义包括三个要素:集合、封闭性和满足环公理。
环的性质有零元的唯一性、加法逆元的唯一性、分配律和幂等性等。
三、域域是在环的基础上引入了除法运算的代数结构。
域的定义包括四个要素:集合、封闭性、满足域公理和乘法逆元的存在性。
域的性质有乘法单位元的唯一性、乘法逆元的唯一性和消去律等。
四、向量空间向量空间是线性代数的基础概念,它是一个集合和一个数域上的向量运算构成的代数结构。
向量空间的定义包括十个要素:集合、封闭性、加法单位元、加法逆元、加法交换律、加法结合律、标量乘法结合律、标量乘法分配律、标量乘法单位元和标量乘法结合律。
向量空间的性质有零向量的唯一性、加法逆元的唯一性和标量乘法的分配律等。
五、同态映射同态映射是近世代数中的一个重要概念,它是保持代数结构之间运算关系的映射。
同态映射的定义要求保持运算的封闭性、满足运算关系和保持单位元。
同态映射的性质有保持运算的封闭性、满足运算关系和保持单位元等。
六、理想理想是环和域中的一个重要概念,它是一个子集,并且满足加法逆元、封闭性和分配律。
理想的性质有加法单位元的存在性、加法逆元的存在性和分配律等。
七、同余关系同余关系是环中的一个重要概念,它是一种等价关系,表示两个元素具有相同的余数。
同余关系的性质有自反性、对称性和传递性等。
八、域的扩张域的扩张是域论中的一个重要概念,它是在一个域上构造出一个更大的域。
域的扩张可以通过添加一个或多个元素来实现,使得新的域仍然满足域公理。
近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。
近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。
近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。
下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。
3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。
“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。
设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。
若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。
若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。
不含任何元素的集合叫空集,空集是任何一个集合的子集。
集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。
例如:${}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。
本文中常用的集合及记号有: 整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ;正整数(自然数)集合{} ,3,2,1=+Z;有理数集合Q ,实数集合R ,复数集合C 等。
—一个集合A 的元素个数用A 表示。
当A 中有有限个元素时,称为有限集,否则称为无限集。
用∞=A 表示A 是无限集,∞<A 表示A 是有限集。
结合律,分配律,交换律
结合律、分配律和交换律是数学中基本的运算定律,它们在各种数学运算中都起着重要的作用。
1.交换律:交换律是指在数学运算中,交换两个数的位置,结果不变。
这个定律适用于加法和乘法,
即a+b=b+a和a×b=b×a。
交换律是数学中最基本的定律之一,它使得我们在进行加法和乘法运算时可以更加灵活地处理数的顺序。
2.结合律:结合律是指在数学运算中,改变运算顺序但保持数的组合方式不变,结果仍然相同。
这
个定律也适用于加法和乘法,即(a+b)+c=a+(b+c)和(a×b)×c=a×(b×c)。
结合律使得我们可以在进行多个数的加法和乘法运算时,按照不同的组合方式进行计算,从而得到相同的结果。
3.分配律:分配律是指在数学运算中,一个数与一个数的和相乘,等于把这个数分别与和中的每一
个数相乘,再把所得的积相加。
这个定律适用于乘法和加法,即a×(b+c)=a×b+a×c。
分配律是数学中非常重要的定律之一,它使得我们可以在进行乘法和加法混合运算时,更加灵活地处理数的组合和运算顺序。
这些运算定律在数学中有广泛的应用,它们不仅简化了计算过程,还使得数学运算更加具有逻辑性和系统性。
在进行数学运算时,我们可以根据这些定律来选择合适的运算顺序和组合方式,从而更加高效地得到正确的结果。
《近世代数》课程教学大纲第一部分大纲说明一、课程概况适用专业:数学与应用数学课程名称:近世代数课程编码:0741123090教学时数:72二、总则1.本课程的目的和要求:近世代数不仅在数学中占有及其重要的地位,而且在学科中也有广泛的应用,如理论物理、计算机学科等。
其研究的方法和观点,对其他学科产生了越来越大的影响。
群、环、域、模是本课程的基本内容,要求学生熟练掌握群、环、域的基本理论和方法,并对模的概念有所理解。
2.本课程的主要内容:本课程讲授代数中典型的代数系统:群、环、域。
要求学生能了解群的各种定义,循环群,n阶对称群,变换群,陪集,不变子群的定义及其性质,了解环、域、理想、唯一分解环的定义。
能够计算群的元素阶,环中可逆元,零因子、素元,掌握Lagrange定理,群、环同态和同构基本定理,掌握判别唯一分解环的方法。
3.教学重点与难点:重点:群、正规子群、环、理想、同态基本原理.难点:商群、商环。
4.本课程的知识范围及与相关课程的关系集合论初步与高等代数(线性代数)是学习本课程的准备知识。
本课程学习以后可以继续研读:群论、环论、模论、李群、李代数、计算机科学等。
三、课程说明1. 课程代码:(中文)近世代数(英文)Abstract Algebra2. 课程类别:专业必修课3.学分:4学分4. 学时:72学时5.适用专业:数学与应用数学6. 适用对象:本科7.首选教材:《近世代数基础》,张禾瑞,人民教育出版社,1978年修订本。
二选教材:《近世代数》,吴品三,高等教育出版社,1978年修订本。
8. 考核方式和成绩记载说明考核方式为考试。
严格考核学生出勤情况,达到学籍管理规定的旷课量则取消考试资格。
综合成绩根据平时成绩和期末考试成绩评定,平时成绩占20%,期末考试成绩占80%。
四、教学安排《近世代数》课程的讲授为一个学期,共72学时,内容包括第1章到第4章的内容。
学时分配五、教学环节该课程是理论性较强的学科,由于教学时数所限,本课程的理论推证较少,因此必须通过做练习题来加深对概念的理解和掌握,熟悉各种公式的运用,从而达到消化、掌握所学知识的目的。
近世代数中结合律、交换律及同态的应用作者:吴双权来源:《读书文摘(下半月)》2017年第04期摘要:在近世代数的主要研究对象是所谓代数系统,即带有运算的集合。
近世代数在数学的其他分支和自然科学的许多领域里都有很重要的应用,而在近世代数中,结合律、交换律以及同态是一个重要的概念。
本文探讨了同态和代数运算中结合律的应用以及交换律成立的简便方法。
关键词:结合律;交换律;同态定义:一个[A×B到D]的映射叫做一个[A×B到D]的代数运算。
例题:[A={3},B={2},D={对,错}]0:(3.2)→对3[∘]2是一个[A×B到D]的代数运算。
定义:假如[∘]是[A×A到A]的代数运算,我们就说,集合[A]对于代数运算[∘]来说是闭的,也说,[∘]是[A]的代数运算或二元运算。
定义:设[∘]是集合[A]的一个代数运算,如果[∀a,b,c∈A]都有[a∘b∘c=a∘(b∘c)],则称[∘]满足结合律。
定义:假如对于[A]的n(n≥2)个固定的元[a1,a2,…,an]来说,所有的[π(a1∘a2∘…∘an)]都相等,我们就把由这些步骤可以得到的唯一的结果,用[a1∘a2∘…∘an]来表示。
定理:假如一个集合[A]的代数运算[∘]满足结合律,那么对于[A]的任意n(n≥2)个元[a1,a2,…,an]来说,所有的[π(a1∘a2∘…∘an)]都相等;因此符号[a1∘a2∘…∘an]也就总有意义。
例题:结合律是否成立?思路:考虑[(x∘y)∘z]和[x∘(y∘z)],共有54个,比较繁琐因为[a∘x=x,x∘a=x]所以[x,y,z]取[a]的话等式成立,只需考虑[x,y,z]取[b,c]情况即可。
定义:一个[A×A到D]的代数运算[∘]适合交换律,如果[∀a,b∈A]都有[a∘b=b∘a]。
定理:设[A]的代数运算[∘]同时满足结合律和交换律,那么[a1∘a2∘…∘an]中的元的次序可以任意掉换。
第 2 讲 一、算律§4—6 结合律、交换律及分配律(2课时) (Associative Law Commutative Law and distributive law ) 定义 任一个D B A 到⨯的映射都叫做D B A 到⨯的一个代数运算。
定义 若A A A 到是⨯ 的代数运算,则可称 是A 的代数运算或称二元运算。
§4、结合律:∙代数运算就是二元运算,当元素个数2>时,譬如4321,,,a a a a 同时进行运算:4321a a a a ,这已经超出了我们定义的范围,这个符号至少现在是没有意义的。
∙对四个元素我们可以进行两两运算,进行了三次后就能算出结果。
两两运算的过程叫做加括号。
加括号的方法显然不止一种:4321])[(a a a a ;4321)]([a a a a ;)()(4321a a a a… … …加括号的方法不一样,其运算的结果是否一样?例1:设,Z A =“ ”是整数中的减法:则特取Z ∈3,5,2,63)52(-=--,而0)35(2=--)35(23)52(--≠--∴其运算的结果不一样。
例2:设,Z A =“ ”是整数中的加法:则 )()(,,,t s r t s r Z t s r ++=++∈∀定义1:设 是集合A 的一个代数运算,如果A c b a ∈∀,,都有)()(c b a c b a =,则称 满足结合律。
例2、 “+”在Z 中适合结合律。
例1、 “-”在Z 中不满足结合律。
思考题:就结合律成立与交换律不成立分别各举一例。
上述实例告诫我们,并不是每一个代数运算都能满足结合律的。
注意:定义2:设A 中的代数运算为 ,任取)2(>n n 个元素n a a a ,,,21 ,如果所有加括号的方法最后算出的结果是一样的,那么这个结果就用n a a a 21来表示。
注意:从定义2可知,“n a a a 21”)2(>n 也可能是有意义的。
结合律,分配律,交换律全文共四篇示例,供读者参考第一篇示例:结合律、分配律和交换律是代数中重要的运算法则。
它们为我们提供了在计算过程中方便的工具和准则,能够帮助我们更快更准确地完成数学运算。
接下来我们将详细介绍这三条法则的定义、应用以及具体的数学运算例子,让我们一起深入探讨。
首先我们来介绍结合律,结合律是指对于某种运算,在运算三个或更多的数时,无论先后如何凑合这些数,得到的结果是一样的。
具体来说,对于任意三个数a、b、c和一个运算符号∗,如果对应的运算法则为(a∗b)∗c=a∗(b∗c),那么我们称这种运算是满足结合律的。
结合律在代数运算中有着广泛的应用,尤其在多项式的计算和矩阵乘法的运算中,可以大大简化计算的过程。
下面是一个简单的例子,说明结合律的应用:例子:计算(2+3)+4 和2+(3+4)根据结合律,我们知道(a+b)+c=a+(b+c),因此(2+3)+4=2+(3+4)=9第二篇示例:结合律、分配律、交换律是数学中的基本法则,它们贯穿于各种数学运算中。
这些法则不仅在数学领域中起着重要的作用,而且在日常生活中也有着广泛的应用。
在本文中,我们将对结合律、分配律、交换律进行详细的介绍,揭示它们的重要性以及在实际应用中的价值。
首先来介绍结合律。
结合律是指对于一个运算,无论先进行哪些元素之间的运算,得到的结果都是一样的。
“结合”一词基本上指的是将两个以上的操作或量合成一个,是一种将多个操作合并成一个的操作。
对于加法运算,结合律可以表示为(a + b) + c = a + (b + c);对于乘法运算,结合律可以表示为(a × b) × c = a × (b × c)。
结合律的存在性使得我们在进行复杂的运算时能够简化计算过程,提高效率。
其次是分配律。
分配律是指一个运算中的两个加数(或因数)与另一个运算之积(或剩余)之间的关系。
“分配”一词本身的意思是把整体分成若干部分,再讨论这些部分之间的关系。
第 2 讲一、算律§4—6 结合律、交换律及分配律(2课时)(Associative Law Commutative Law and distributive law ) 定义 任一个D B A 到⨯的映射都叫做D B A 到⨯的一个代数运算。
定义 若A A A 到是⨯ο的代数运算,则可称ο是A 的代数运算或称二元运算。
§4、结合律:•代数运算就是二元运算,当元素个数2>时,譬如4321,,,a a a a 同时进行运算:4321a a a a οοο,这已经超出了我们定义的范围,这个符号至少现在是没有意义的。
•对四个元素我们可以进行两两运算,进行了三次后就能算出结果。
两两运算的过程叫做加括号。
加括号的方法显然不止一种:4321])[(a a a a οοο;4321)]([a a a a οοο;)()(4321a a a a οοο … … … 加括号的方法不一样,其运算的结果是否一样?例1:设,Z A =“ο”是整数中的减法:则特取Z ∈3,5,2,63)52(-=--,而0)35(2=--)35(23)52(--≠--∴其运算的结果不一样。
例2:设,Z A =“ο”是整数中的加法:则)()(,,,t s r t s r Z t s r ++=++∈∀定义1:设ο是集合A 的一个代数运算,如果A c b a ∈∀,,都有)()(c b a c b a οοοο=,则称ο满足结合律。
例2、 “+”在Z 中适合结合律。
例1、 “-”在Z 中不满足结合律。
思考题:就结合律成立与交换律不成立分别各举一例。
上述实例告诫我们,并不是每一个代数运算都能满足结合律的。
注意:定义2:设A 中的代数运算为ο,任取)2(>n n 个元素n a a a ,,,21Λ,如果所有加括号的方法最后算出的结果是一样的,那么这个结果就用n a a a οΛοο21来表示。
注意:从定义2可知,“n a a a οΛοο21”)2(>n 也可能是有意义的。
定理1(p11. 定理):如果A 的代数运算ο满足结合律,那么 对于A 的任意)2(≥n n 个元素n a a a ,,,21Λ来说,所有加括号的方法运算的结果总是唯一的,因此,这一唯一的结果就可用n a a a οΛοο21来表示。
证明:因n 是有限数,所以加括号的方法必是有限的。
•任取一种加括号的方法)(21n a a a οΛοοπ,往证:)()(2121n n a a a a a a οΛοοοΛοο=π•对n 用数学归纳法。
当n=2时,结论成立。
假设对<n ,结论成立,即所有加括号的方法运算的结果是唯一的。
设2121)(b b a a a n οοΛοο=π,1b 和2b 分别是i 和i n -个元素经加括号而运算的结果.1,1-≤--≤n i n n i ,由归纳假设,。
))(][]}[{(][][)(2121212121212121n i i i n i i i n i i i n a a a a a a a a a a a a a a a a a a b b a a a οΛοοοοΛοοοΛοοοοΛοοοΛοοοοΛοοοοΛοο++++++====π§5、交换律定义3:设ο是集合A 的一个代数运算,如果A b a ∈∀,都有a b b a οο=,则称ο满足交换律。
定理2:设A 的代数运算ο同时满足结合律和交换律,那么n a a a οΛοο21中的元的次序可以任意掉换。
证明:用数学归纳法。
当n=2时定理成立,假设当元素的个数为1-n 时,定理成立,元素的个数为n 时,设12ni i i a a a o oL o 是12,,,n a a a L 的按任意一个次序相乘的结果。
这里的12,,n i i i L是1,2,L n 的一个排列,而12,,,ni i i a a a L 是12,,,n a a a L 的一个 排列。
因此,有k i n a a = 。
所以,12121112111211121112()[()]()[()][()()]()n k k n k k n k k n k k n i i i i i i n i i i i i i i n i i i i i n i i i i i nna a a a a a a a a a a a a a a a a a a a a a a a a a a a a a -+-+-+-+=====o oL o o oL o o o oL o o oL o o oL o o o oL o o oL o o o oL o o oL o o o oL o满足交换律的运算一般用“+”表示。
§6、分配律定义4:设B A ,都是集合,而e 是A A B →⨯的代数运算,而⊕是A 的代数运算,如果A a a B b ∈∀∈∀21,,,都有1212()()()b a a b a b a ⊕=⊕e e e那么称,⊕e 满足左分配律。
定理3:设B A ,和,⊕e 如上,如果⊕满足结合律,且,⊕e 满足左分配律,那么A a a a B b n ∈∀∈∀,,,,21Λ,都有1212()()()()n n b a a a b a b a b a ⊕⊕⊕=⊕⊕⊕e L e e L e[论证思路]•采用数学归纳法,归纳假设1-n 时命题成立。
定义5:设B A ,和,⊕e 同上,若A a a B b ∈∀∈∀21,,,若有1212()()()a a b a b a b ⊕=⊕e e e ,那么称,⊕e 满足右分配律定理4:设B A ,和,⊕e 同上,若⊕适合结合律,而,⊕e 适合右分配律。
那么1211,,,,,()()()n n n b B a a a A a a b a b a b ∀∈∀∈⊕⊕=⊕⊕L L e e L e 都有。
注意:定义4与定义5,、定理3与定理4是对称的两对概念,所以定理4的证明可依据定理3的思路解之。
作业:12P ②,16P 。
二、一一映射,同态及同构§7、1、一一映射(双射。
Bijection )在高等代数中,已对各类映射作了系列性的介绍,这里只简要的复习。
定义1、设ϕ是集合A 到A 的映射,且ϕ既是单的又是满的,则称ϕ是一个一一映射(双射)。
定理1:设ϕ是A 到A 的一个双射,那么由ϕ可诱导出 (可确定出)A 到A 的一个双射1-ϕ(通常称1-ϕ是ϕ的逆映射) 结论:设A A →:ϕ是映射,那么:(1)ϕ是双射⇔ϕ可唯一的确定一个逆映射A A →-:1ϕ,使得:• A A 1,111==--ϕϕϕϕ;• ϕ也是1-ϕ的逆映射,且ϕϕ=--11)(;(2)ϕ是双射A A 与⇒同时是有限集或同时是无限集。
2、变换(transformation )定义2:设A A →:ϕ是映射,那么称ϕ为A 的变换。
当ϕ是双射(单射,满射)时,也称ϕ为一一变换(单射变换,满射变换)例2 19P§8、同态(Homomorphism )比较代数系统的一种方法定义3:设集合A A ,都各有代数运算οο,(称},{οA 及},{οA 为代数系统)而A A →:ϕ是映射,且满足下面等式:)()()(,,b a b a A b a ϕϕϕοο=∈∀(习惯上称ϕ可保持运算)那么称ϕ是A 到A 的同态映射。
例3、设}1,1{:-=→A Z ϕ,其中},{οZ 中的代数运算ο就是Z 中 的加法,而},{οA 中的代数运算ο为数中的乘法。
)3()2()32(,111)1()1()1()1()3()2(,1)5()32()32(,1)3(,1)2(,,1)(ϕϕϕϕϕϕϕϕϕϕϕοοοοο≠-≠⇒=-⨯-=--=-==+=-=-=∈∀-=即而那么现设Z n nϕ不是同态映射。
例4、设},{οZ 与},{οA 同例3,今设Z n n A Z ∈∀=→,1)(:ττ为, 那么的同态映射到是即A Z n m n m n m n m Z n m τττττττ),()()(111)()(,1)(,,οοοο=∴=⨯==∈∀如果同态映射ϕ是单射(满射),那么自然称ϕ是同态单射(同态满射),而在近世代数中,同态满射是尤其重要的。
定义4:若ϕ是},{οA 到},{οA 的同态满射,那么习惯上称A A 与 同态,并记为A ~A ;习惯上称A 是A 的同态象.定理1. 如果ϕ是},{οA 到},{οA 的同态满射,那么(1) 若ο满足结合律ο⇒也适合结合律;(2) 若ο满足交换律ο⇒也适合交换律.证明:(1)任取ϕ因,,,A c b a ∈是满射b b a a A c b a ==∈∃⇒)(,)(,,,ϕϕ使,又因为A 中ο的满足结合律c b a c b a οοοο)()(=⇒即))(())((c b a c b a οοοοϕϕ=,但是ϕ是同态映射。
)()]()([)()()())((c b a c b a c b a c b a οοοοοοοο===ϕϕϕϕϕϕc b a c b a c b a c b a οοοοοοοο)()()]()([)()()))((===ϕϕϕϕϕϕ 所以c b a c b a οοοο)()(=同理可以证明(2)定理2、设},,{⊕⊗A 和},,{⊕⊗A 都是代数系统,而映射A A →:ϕ关于⊕⊗,以及⊕⊗,都是同态满射,那么:(1) 若⊕⊗,满足左分配律⇒⊕⊗,也适合左分配律;(2) 若⊕⊗,满足右分配律⇒⊕⊗,也适合右分配律。
证明:(1)ϕ因,,,A c b a ∈∀是满射c c b b a a A c b a ===∈∃⇒)(,)(,)(,,,ϕϕϕ使. 又因为ϕ是关于⊕⊗,及⊕⊗,的同态映射⇒)()()]()([)]()([)()()]()[()]([))()(()()(c a b a c a b a c a b a c a b a c b a c b a c b a ⊗⊕⊗=⊗⊕⊗=⊗⊕⊗=⊗⊕⊗=⊕⊗=⊕⊗=⊕⊗ϕϕϕϕϕϕϕϕϕϕϕ 即)()()(c a b a c b a ⊗⊕⊗=⊕⊗.同理可证明(2)。
思考题1:在定理1及定理2中,都要求映射ϕ是满射,似 乎当ϕ是同态满射时,才能将A 中的代数性质(结合律、交 换律及分配律)“传递”到A 中,那么:(1) 当ϕ不是满射时,“传递”还能进行吗?(即定理1,2 成立吗?)(2) 即使ϕ是满射,“传递”的方向能改变吗?(即A 中的性 质能“传递”到A 中去吗?)§9、一、同构(isomorphism )定义4、设ϕ是},{οA 到},{οA 的同态映射,若ϕ是个双射,那么称ϕ是同构映射,或称A 与A 同构,记为A A ≅。