第3章 电路、信号与系统相互关系及分析方法概述
- 格式:pdf
- 大小:237.83 KB
- 文档页数:8
电子信息工程专业公开课信号与系统分析电子信息工程专业公开课信号与系统分析是该专业的一门重要课程,主要讲解信号与系统的基本概念、理论和应用。
本文将从信号与系统的基本概念、信号与系统的数学表示以及信号与系统的应用等方面进行探讨。
一、信号与系统的基本概念在电子信息工程中,信号是指携带有用信息和数据的电波或电流,它可以是数字信号或模拟信号。
系统是指处理信号的一种装置或方法。
信号与系统的基本概念涉及信号的分类、信号的特性、系统的分类以及系统的特性等。
在信号的分类中,常见的包括连续时间信号和离散时间信号。
连续时间信号是指信号在时间上是连续的,而离散时间信号是指信号在时间上是离散的。
在信号的特性中,常见的包括能量信号和功率信号。
能量信号是指信号在有限时间内的总能量有界,而功率信号是指信号的功率在无限时间内是有限的。
系统的分类主要包括线性系统和非线性系统。
线性系统是指系统的输出与输入之间存在线性关系,而非线性系统则没有线性关系。
在系统的特性中,常见的包括时不变系统和时变系统。
时不变系统是指系统的输出与输入之间不随时间变化,而时变系统则随时间变化。
二、信号与系统的数学表示为了方便分析和处理信号与系统,我们需要利用数学方法对其进行表示。
连续时间信号可以用函数表示,离散时间信号可以用数列表示。
连续时间信号的数学表示主要包括信号的幅度、相位和频率等。
离散时间信号的数学表示主要包括信号的取样、量化和编码等。
在系统的数学表示中,常见的包括系统的冲激响应、传递函数和频率响应等。
系统的冲激响应是指系统在输入为冲激函数时的输出响应,传递函数是指系统的输出与输入之间的关系,频率响应是指系统对输入信号频率的响应情况。
三、信号与系统的应用信号与系统在电子信息工程中有着广泛的应用。
在通信系统中,信号与系统分析可以用于信号的调制和解调、信号的传输和接收等方面。
在控制系统中,信号与系统分析可以用于系统的建模与仿真、系统的控制和稳定性分析等方面。
1.1信号与系统概述信号的概念1主要内容系统的概念2信号与系统研究的主要问题3信号与系统面对最基本问题1、什么是信号?信号是消息的表现形式,消息则是信号的具体内容。
信号是各类消息的运载工具,是某种变化的物理量。
如温度、气压、水流、水压、流量、语音、图像等等。
手机铃声、红绿灯为声信号、光信号。
不同的声、光、电信号都包含有一定的意义,这些意义统称为信息。
消息中有意义或实质性的内容可用信息量量度。
现代社会的人每天都会与各种各样载有消息的信号密切接触。
例如电台、电视台借助一定形式的信号发送节目,听众观众听广播、看电视是接收信息;借助网络人们打电话、上网、用微信既可以接收信息,也可以发送信息。
2、什么是系统?系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
在自然、社会、工程、物理等诸多领域中,有诸多不同的系统。
系统的概念与方法被广泛应用。
通信、控制系统是信息科学与技术领域的重要组成部分,它们还可以组合成更复杂高级的系统。
本课程主要借助电路问题,讨论系统分析的概念与方法。
信号、电路(网络)与系统之间联系密切。
离开信号,电路与系统没有意义。
信号是待处理消息的表现形式,而电路或系统是为对信号进行加工处理的某种组合。
电路与系统两词差别主要在着眼点或角度不同。
电路问题关心局部,系统问题关注全局。
主要研究信号通过系统进行传输、处理的基本理论和基本分析f (⋅)y (⋅)h (⋅)方法,通常可由下图所示的方框图表示。
信号与系统的研究与描述其中f (⋅)是系统的输入(激励),y (⋅)是系统的输出(响应),h (⋅)是系统特性一种描述。
“⋅”是自变量,可以是连续变量t ,也可以是离散变量n 。
课程中默认自变量(独立变量)为时间。
信号与系统分析框图中,有激励、系统特性、响应三个变量,描述信号与系统有时域、频域、复频域三种方法。
研究的主要问题是各变量不同描述方法之间的转换关系。
三个变量之间的关系(已知其中两个求解出第三个)。
西电821831电路、信号与系统考研总结西电821/831电路、信号与系统的归纳总结一、821//831总体复习要求“电路、信号与系统”由“电路”和“信号与系统”两部分组成。
“电路”要求学生掌握电路的基本理论和基本的分析方法,使学生具备基本的电路分析、求解、应用能力。
要求掌握电路的基本概念、基本元件的伏安关系、基本定律、等效法的基本概念;掌握电阻电路的基本理论和基本分析方法;掌握动态电路的基本理论,一阶动态电路的时域分析方法;正弦稳态电路的基本概念和分析方法;掌握谐振电路和二端口电路的基本分析方法。
“信号与系统”要求学生掌握连续信号的时域、频域、复频域分解的数学方法和分析方法,理解其物理含义及特性。
掌握离散信号的时域时域、Z域分解的数学方法和分析方法,理解其物理含义及特性。
熟练掌握时域中的卷积运算和变换域中的傅里叶变换、拉普拉斯变换、Z变换等数学工具。
掌握系统函数及系统性能的相关概念及其判定方法。
掌握线性系统的状态变量分析法。
二、“电路”部分各章复习要点(一)电路基本概念和定律1.复习内容电路模型与基本变量,基尔霍夫定律,电阻元件与元件伏安关系,电路等效的基本概念(二)电阻电路分析1.复习内容电路的方程分析法,网孔法和回路法,节点法和割集法。
电路定理的概念、条件、内容和应用。
(三)动态电路1.复习内容动态元件的概念,动态元件的伏安关系。
动态电路的基本概念,动态电路的方程描述和响应,一阶动态电路的求解(四)正弦稳态电路1.复习内容正弦稳态电路的基本概念,阻抗与导纳,功率及功率计算。
(五)电路的频率响应和谐振电路1.复习内容一阶电路和二阶电路的频率响应,谐振概念、谐振电路的组成、谐振电路参数的计算。
串联谐振电路,并联谐振电路。
(六)二端口电路1.复习内容二端口电路方程、参数的计算。
三、“信号与系统”部分各章复习要点(一)电路基本概念和定律1.复习内容连续信号与离散信号的定义、分类,信号的函数表示和波形。
电路分析第三章叠加方法及网络函数电路分析是电子学中重要的基础课程之一,它研究的是在电路中流动的电流和电压之间的关系。
电路分析的方法有很多种,其中叠加方法是其中的一种重要方法。
第三章的内容主要涉及电路中多个电源和信号源同时存在的情况,这就需要用到叠加方法来进行分析。
叠加方法的基本思路是将电路中的各个信号源分别单独作用,然后再将这些单独作用的结果按照一定的规则合并起来,最终得到电路中各个元件的电流和电压。
叠加方法的详细步骤如下:1.将电路中的所有独立电压源短路,即将它们看作短路电流源,而所有独立电流源则断开。
2.计算在只有一个独立源作用时,电路中各个元件的电流和电压。
这可以使用电流分配定律和电压分配定律来计算。
3.将电路中的其他独立电压源和电流源按照第一步的方法分别单独作用,然后再次计算各个元件的电流和电压。
4.将第2步和第3步得到的结果按照一定的规则合并起来,得到电路中各个元件的总电流和总电压。
叠加方法的优点是简单易懂,计算步骤清晰,能够有效地分析复杂的电路。
但是叠加方法也有一些限制,例如不能应用于非线性电路和开关电路等特殊情况。
除了叠加方法,还有其他一些常用的电路分析方法,例如基尔霍夫定律、戴维南定理和诺顿定理等。
这些方法可以在不同的情况下灵活运用,相互之间也可以互为补充。
网络函数是电路分析中另一个重要的概念,它描述了输入信号和输出信号之间的关系。
常见的网络函数有传输函数、频率响应函数和冲激响应函数等。
网络函数可以用于分析电路的稳定性、频率特性和时域响应等问题。
例如,传输函数是一种重要的网络函数,它描述了电路的输出信号与输入信号之间的传输关系。
传输函数通常用频率来表示,可以从频率响应函数中得到。
传输函数可以帮助我们分析电路的增益、相位和频率响应等重要特性,以及进行系统设计和优化。
总之,电路分析的叠加方法和网络函数是电子学中重要的分析工具。
叠加方法可以帮助我们分析复杂电路,得到电路中各个元件的电流和电压。