随机信号分析估计理论
- 格式:ppt
- 大小:956.00 KB
- 文档页数:15
随机信号分析理论的应用综述通信1315001班李姝一.概述(1)随机信号理论的研究背景:近年来,随着现代通讯和信息理论的飞速发展,对随机信号的研究已经渗透到各个科学技术领域,随机信号的处理是现代信号的处理的重要理论基础和有效方法之一。
在学习电子信息类学科时,经常需要分析随机信号及与系统的相互作用,这时,随机信号分析理论就应用而生,对随机信号进行实验分析研究和计算机统计试验模拟和现代谱估值对解决实际问题有很大的帮助。
随着数字通信的崛起,这些理论和方法很快被通信技术界所接受,并将它们拓展到最佳解调领域,形成了随机信号处理学科的完整内容。
(2)随机信号理论的主要研究问题:统计问题:由于对随机过程(信号)的分析来讲,我们往往不是对一个实验结果(一个实现或一个具体的函数波形)感兴趣,而是关心大量实验结果的某些平均量(统计特性),因而随机过程(信号)的描述方式以及推演方式都应以统计特性为出发点。
这样,尽管从个别的实现看不出什么规律性的东西,但从统计的角度却表现出一定的规律性,即统计规律性,它是本门学科一个最根本的概念。
模型问题:本课程重点研究一般化(抽象化)的系统干扰和信号,往往仅给出他们的系统函数模型和数学模型,而不是讨论具体的系统,更不会局限于一些具体的电路系统上。
物理问题:概率论与数理统计随机过程理论等只是处理本命学科有关问题的一种工具因而学习本门课程除了注意处理问题的方法,更重要的是对一数学推演的结果和结论的物理意义有深入的理解。
重点掌握处理问题的思路与方法。
随机信号通过线性、非线性系统统计特件的变化;在通信、雷达和其他电子系统中常见的一些典型随机信号,如白噪声、窄带随机过程、高斯随机过程、马尔可夫过程等。
二.主要内容(1)随机信号理论的主要研究内容:本课程主要学习随机过程的基本概念和基本特征,它是学习随机信号分析的基础;随机信号的平稳性,平稳随机过程的数字特征、相关函数的性质。
掌握平稳随机序列的期望、自相关序列的求解等;功率谱密度以及它的性质、互谱密度及性质等;随机信号两种统计特性的描述方法,重点研究数字特征,如均值、方差、相关函数、相干函数、功率谱密度平稳随机过程:将随机过程划分为平稳和非平稳有重要的实际意义,因为过程若属于平稳的可使问题的分析变得简单。
欢迎共阅随机信号分析理论的应用综述(结课论文)学院:3.1均匀分布白噪声通过低通滤波器3.2语音盲分离3.3系统辨识3.4基于bartlett的周期图法估计功率谱3.5基于MATLAB_GUI的Kalman滤波程序第四章展望参考文献第一章概述1.1随机信号分析的研究背景在一般的通信系统中,所传输的信号都具有一定的不确定性,因此都属于随机信号,否则不可能传递任何信息,也就失去了通信的意义。
随机信号是一种不能用确定的数学关系式来描述的、无法预测未来时刻精准值的信号,也无法用实定的规律性,即统计规律性,它是本门学科一个最根本的概念。
随机信号分析重点研究一般化(抽象化)的系统干扰和信号,往往仅给出他们的系统函数模型和数学模型,而不是讨论具体的系统,更不会局限于一些具体的电路系统上。
概率论与数理统计随机过程理论等只是处理本命学科有关问题的一种工具因而学习本门课程除了注意处理问题的方法,更重要的是对一数学推演的结果和结论的物理意义有深入的理解。
随机信号通过线性、非线性系统统计特件的变化;在通信、雷达和其他电子系统中常见的一些典型随机信号,如白噪声、窄带随机过程、高斯随机过程、马尔可夫过程等。
第二章随机信号分析的主要内容随机信号分析与处理时研究随机信号的特点及其处理方法的专业基础课程,是目标检测、估计、滤波等信号处理的理论基础,在学习过程中,我们需要学会统的重要工具希尔伯特变换,来分析窄带随机过程的统计特性及其一些重要性质。
讨论窄带随机过程经包络检波器和平方律检波器后统计特性的变换。
随机信号通过非线性系统:当动态非线性系统可分时,分为线性系统与无记忆的非线性系统的级联,一般用多项式和伏特拉级数的方法。
马尔可夫过程:一随机过程 {X(t),t∈T},其值域(状态)可以连续取值,也可以离散取值,如果他的条件概率满足下列关系:P[X(tn+1)<=Xn+1 X(tn)=xn,X(tn-1)=xn-1,...,X(to)=xo]=P[X(tn+1)<=xn+1 X(tn)=xn] 则X(t)为马尔可夫过程。
现代测试技术第6章随机信号分析简介第六章随机信号分析简介本章总课时理论4课时。
本章主要内容本章介绍测试技术中随机信号分析方法,主要内容包括随机信号的幅值域分析、相关分析、功率谱分析。
本章基本要求熟练掌握描述随机信号的主要数字特征参数,掌握时域与频域分析的基本方法,了解时域与频域分析的应用。
本章重点及难点本章重点为随机信号的幅值域分析、相关分析、功率谱分析的基本原理,难点为各部分相关的理论分析。
本章教学方法1. 以课堂理论教学为主。
2. 在理论教学过程中,可利用多媒体对已有应用实例进行演示性教学,使学生对随机信号信号时域与频域分析的应用具有一定的感性认识,激发学生掌握相关基本原理与应用的兴趣。
3. 教学中要求学生在掌握基本原理的基础上,对幅值域分析、相关分析、功率谱分析进行比较,以促进对随机信号信号时域与频域分析方法的理论与应用有比较清楚的认识。
4. 充分利用课外辅导及练习加深对所学理论知识的认识。
实验本章未安排实验课。
课外学习指导及作业1. 名词解释随机信号的均值、方差、均方值、均方根值、相关函数、功率谱密度函数。
2. 简述题(1) 描述随机信号的主要数字特征参数有哪些?其物理意义是什么?各自描述了随机信号的什么特性?(2) 相关分析是在什么范围内分析随机信号的方法?相关系统与相关函数各自描述了随机信号的什么特征?(3) 相关分析在工程上有什么样的应用?试举例说明。
(4) 功率谱分析是在什么范围内分析随机信号的方法?(5) 功率谱分析在工程上有什么样的应用?试举例说明。
(6) 实际信号的谱分析中为什么自功率谱比幅值谱应用更为广泛?(7) 自相关函数、互相关函数、自谱、互谱各自保留了原信号的哪些特征?这对实际应用有什么影响?3. 计算题(1) 试求三角波与方波的概率密度函数p1(x)与p2(x)。
(2) 设随机信号x(t)的自功率谱密度函数为S x(f),将其输入到频率响应函数为H(f)=1/(1+j2πfτ)的系统中,试求该系统的输出信号y(t)的自功率谱密度函数S y(f),以及输入输出函数的互功率谱密度函数S xy(f)。
实验四 随机信号的线性谱估计方法一、设计目的1.利用自相关函数法和周期图法实现随机信号的功率谱估计。
2.观察数据长度、自相关序列长度、信噪比、窗函数、平均次数等对谱估计的分辨率、稳定性、主瓣宽度和旁瓣效应的影响。
3.学习使用FFT 提高谱估计的运算速度。
4. 体会线性谱估计方法的优缺点。
二、设计原理与方法假设信号()x n 为平稳随即过程,其自相关序列定义为()()()m E x n x n m φ*⎡⎤+⎣⎦(4-1) 其中E 表示取数学期望,*表示共轭运算。
根据定义,()x n 的功率谱密度()P ω与自相关序列()m φ存在下面关系:()()j mm P m eωωφ∞-=-∞=∑(4-2)1()()2j mm P e d ωφωωπ∞-∞=⎰(4-3)但是,实际中我们很难得到准确的自相关序列()m φ,只能通过随机信号的一段样本序列来估计信号的自相关序列,进而得到信号的功率谱估计。
目前,常用的线性谱估计的方法有两种,即相关函数法和周期图方法,本实验对这两种方法分别予以讨论。
1. 自相关函数法假设我们已知随机信号()x n 的M 长的自相关序列{()}m φ,利用自相关函数法口语得到()x n 的功率谱估计:1111ˆˆˆ()()()()()L mM j mi m M m x i x i m Pm eL mωφωφ---==-+=*+=-∑∑(4-4)利用窗函数,上式又可表达为ˆˆ()()()R j mM m PW m m e ωωφ∞-=-∞=∑(4-5)其中()R M W m 为矩形窗函数,定义为1,()0,RMm M W m m M⎧<⎪=⎨≥⎪⎩ (4-6)因此,ˆ()P ω实际上是真正功率谱()P ω和窗函数()R MW m 傅立叶变换的卷积。
矩形窗函数不仅降低了谱估计的分辨率,而且使谱估计产生了旁瓣,旁瓣效应使那些处于旁瓣附近功率较小的频率分量被淹没掉。
为了降低旁瓣影响,可以采用具有较小旁瓣的窗函数,如Hamming 窗,它定义为:0.540.46cos ,0,HMm m M W M m Mπ⎧+<⎪=⎨⎪≥⎩(4-7)这种窗函数可以有效的抑制旁瓣,但是,此时主瓣宽度增大,从而降低了谱估计的分辨率,这种主瓣和旁瓣之间的矛盾在线性谱估计方法中是无法解决的。
随机信号的DOA估计方法一、实验(shíyàn)目的1、掌握利用(lìyòng)周期图法、Capon 方法(fāngfǎ)、MUSIC方法实现随机(suí jī)信号DOA估计的方法。
2、观察阵元数目、阵元间距、信噪比、入射方向等参数对角度谱估计性能的影响。
3、理解特征结构类方法进行DOA估计的优点。
二、实验原理信号的来波方向(DOA)估计石阵列信号处理领域中的一个重要内容。
阵列信号模型如图1所示,设均匀阵列中有M个阵元,阵元间距为D,记信号波长为,则阵列等效孔径为,表示入射到阵列上信号的来波方向(DOA),以信号传播方向与阵列法线方向的夹角来表示(顺时针方向为正)。
图 1 阵列信号模型假设信号源位于远场,即信号在到达各个阵元时的波前为平面波,以原点处的阵元为参考点,则个阵元接收到的信号为(1)其中,为信号中心频率, 为波长。
对于窄带解析复信号,有(2)其中(qízhōng)为角频率,则第i个阵元上收到的信号(xìnhào)可以表示为(3)如果(rúguǒ)有d个入射源信号(xìnhào),它们的入射角分别为,则有(4)M个阵元接收到的信号用矩阵表示为(5)其中将矩阵写成如下形式,这里为导向矢量。
信号的DOA估计大多采用搜索夫人方法,通过对谱估计函数进行峰值搜索,估计信号波数到达的方向。
本实验将对周期图法、Capon法以及MUSIC方法予以讨论。
1.周期图法已知接收信号观测样本序列为有限长序列,记,其自相关矩阵为。
本次实验中根据各态历经假设,对次快拍求平均估计自相关矩阵,从而有。
使用周期图方法进行角度谱估计的结果为(6)(7)因此可以(kěyǐ)通过谱峰搜索估计信号的波达方向。
2.Capon方法(fāngfǎ)Capon方法是一种利用空域(kōngyù)滤波实现DOA估计的方法,通过在期望方向形成波束,并利用剩余自由度在干扰方向形成零陷从而一致干扰和噪声。