随机信号分析估计理论
- 格式:ppt
- 大小:956.00 KB
- 文档页数:15
随机信号分析理论的应用综述通信1315001班李姝一.概述(1)随机信号理论的研究背景:近年来,随着现代通讯和信息理论的飞速发展,对随机信号的研究已经渗透到各个科学技术领域,随机信号的处理是现代信号的处理的重要理论基础和有效方法之一。
在学习电子信息类学科时,经常需要分析随机信号及与系统的相互作用,这时,随机信号分析理论就应用而生,对随机信号进行实验分析研究和计算机统计试验模拟和现代谱估值对解决实际问题有很大的帮助。
随着数字通信的崛起,这些理论和方法很快被通信技术界所接受,并将它们拓展到最佳解调领域,形成了随机信号处理学科的完整内容。
(2)随机信号理论的主要研究问题:统计问题:由于对随机过程(信号)的分析来讲,我们往往不是对一个实验结果(一个实现或一个具体的函数波形)感兴趣,而是关心大量实验结果的某些平均量(统计特性),因而随机过程(信号)的描述方式以及推演方式都应以统计特性为出发点。
这样,尽管从个别的实现看不出什么规律性的东西,但从统计的角度却表现出一定的规律性,即统计规律性,它是本门学科一个最根本的概念。
模型问题:本课程重点研究一般化(抽象化)的系统干扰和信号,往往仅给出他们的系统函数模型和数学模型,而不是讨论具体的系统,更不会局限于一些具体的电路系统上。
物理问题:概率论与数理统计随机过程理论等只是处理本命学科有关问题的一种工具因而学习本门课程除了注意处理问题的方法,更重要的是对一数学推演的结果和结论的物理意义有深入的理解。
重点掌握处理问题的思路与方法。
随机信号通过线性、非线性系统统计特件的变化;在通信、雷达和其他电子系统中常见的一些典型随机信号,如白噪声、窄带随机过程、高斯随机过程、马尔可夫过程等。
二.主要内容(1)随机信号理论的主要研究内容:本课程主要学习随机过程的基本概念和基本特征,它是学习随机信号分析的基础;随机信号的平稳性,平稳随机过程的数字特征、相关函数的性质。
掌握平稳随机序列的期望、自相关序列的求解等;功率谱密度以及它的性质、互谱密度及性质等;随机信号两种统计特性的描述方法,重点研究数字特征,如均值、方差、相关函数、相干函数、功率谱密度平稳随机过程:将随机过程划分为平稳和非平稳有重要的实际意义,因为过程若属于平稳的可使问题的分析变得简单。
欢迎共阅随机信号分析理论的应用综述(结课论文)学院:3.1均匀分布白噪声通过低通滤波器3.2语音盲分离3.3系统辨识3.4基于bartlett的周期图法估计功率谱3.5基于MATLAB_GUI的Kalman滤波程序第四章展望参考文献第一章概述1.1随机信号分析的研究背景在一般的通信系统中,所传输的信号都具有一定的不确定性,因此都属于随机信号,否则不可能传递任何信息,也就失去了通信的意义。
随机信号是一种不能用确定的数学关系式来描述的、无法预测未来时刻精准值的信号,也无法用实定的规律性,即统计规律性,它是本门学科一个最根本的概念。
随机信号分析重点研究一般化(抽象化)的系统干扰和信号,往往仅给出他们的系统函数模型和数学模型,而不是讨论具体的系统,更不会局限于一些具体的电路系统上。
概率论与数理统计随机过程理论等只是处理本命学科有关问题的一种工具因而学习本门课程除了注意处理问题的方法,更重要的是对一数学推演的结果和结论的物理意义有深入的理解。
随机信号通过线性、非线性系统统计特件的变化;在通信、雷达和其他电子系统中常见的一些典型随机信号,如白噪声、窄带随机过程、高斯随机过程、马尔可夫过程等。
第二章随机信号分析的主要内容随机信号分析与处理时研究随机信号的特点及其处理方法的专业基础课程,是目标检测、估计、滤波等信号处理的理论基础,在学习过程中,我们需要学会统的重要工具希尔伯特变换,来分析窄带随机过程的统计特性及其一些重要性质。
讨论窄带随机过程经包络检波器和平方律检波器后统计特性的变换。
随机信号通过非线性系统:当动态非线性系统可分时,分为线性系统与无记忆的非线性系统的级联,一般用多项式和伏特拉级数的方法。
马尔可夫过程:一随机过程 {X(t),t∈T},其值域(状态)可以连续取值,也可以离散取值,如果他的条件概率满足下列关系:P[X(tn+1)<=Xn+1 X(tn)=xn,X(tn-1)=xn-1,...,X(to)=xo]=P[X(tn+1)<=xn+1 X(tn)=xn] 则X(t)为马尔可夫过程。