信号分析方法基础知识
- 格式:ppt
- 大小:4.79 MB
- 文档页数:52
信号完整性分析基础系列之一——关于眼图测量(上)汪进进美国力科公司深圳代表处内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。
全分为上、下两篇。
上篇包括一、二部分。
下篇包括三、四部分。
您知道吗?眼图的历史可以追溯到大约47年前。
在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。
您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。
很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。
这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。
在我2004年来力科面试前,我也从来没有听说过眼图。
那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。
之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。
刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。
网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。
“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。
信号分析基础理论知识之频谱分析1. 从时域到频域实际的波形可视为由若干正弦波所合成,每一正弦分量各有其一定的频率和幅值。
(a) 波形;(b) 由三个正弦波组成;(c) 频谱2. 傅里叶变换(1) FT (连续傅里叶变换)正变换:逆变换:其中,ω=2πf,f(t)为时域数据序列,F(ω)为频域的谱函数序列。
(2) DFT(离散傅里叶变换)对N个样点的数字化的时域波形进行数值积分计算,计算某一频率点的幅值。
可在计算机上进行,但计算量巨大。
(3) FFT(快速傅里叶变换)离散变换的一种快速算法,计算速度快,适合工程应用,但具有如下限制:参与计算的数据点数(FFT分析点数)必须为2的幂次方,即2n。
频率分辨率问题,频率间隔Δf。
3. 频谱泄露误差泄漏产生:当实际信号的频率处于f(i)和f(i+1)之间时,则会产生频率泄漏现象,导致误差。
频率误差:FFT频率反映的频率为(i-1)Δf Hz或者iΔf Hz,最大频率误差为Δf/2。
幅值误差:谱峰的幅值减小,泄漏到附近的谱峰上,最大幅值误差为36.3%。
整周期采样:信号的频率正好处于f(i)的位置上,即信号频率等于Δf 的整数倍,则不会产生泄漏。
产生机理(边缘截断):常用校正方法:加窗处理:如hanning、平顶窗等,仅能校正幅值,不能校正频率;频率计校正:可以对若干个单个谱峰进行校正,特点为快速实时,既能校正幅值,又能校正频率;平滑处理:能有效校正最大谱峰处的幅值,不能校正频率。
4. 加窗和平滑加窗可消除或减轻信号截断和周期化带来的不连续问题。
平滑是将频谱任何一点的附近若干点进行相加,将泄露到两边的能量加回来。
(a) 整周期;(b) 严重泄露;(c) 加汉宁窗;(d) 平滑5. 窗函数基本特性相当于滤波器。
6. 常用窗(a) 指数窗形式;(b) hanning窗形式;(c)hamming窗形式(d) 平顶窗形式;(e) Kaiser窗形式;(f) 余弦矩形窗形式7. 平均和重叠平均:对较长的信号进行平均计算,用以消除随机噪声带来的误差。
信号与系统知识点整理信号与系统是电子、通信、自动化等领域中的基础课程之一,主要研究信号的产生、传输、处理和分析等内容。
下面是信号与系统的知识点整理。
1.信号的分类:-连续信号:在时间和幅度上都是连续的信号,如声音、电压波形等。
-离散信号:在时间上是离散的信号,如数字音频、数字图像等。
-周期信号:在一定时间周期内重复出现的信号,如正弦信号、方波等。
-非周期信号:在一定时间段内不重复出现的信号,如脉冲信号、矩形波等。
2.基本信号:-阶跃信号:在其中一时刻突然跃变的信号。
-冲击信号:在其中一时刻瞬间出现并消失的信号。
-正弦信号:以正弦函数表示的周期信号。
-方波信号:由高电平和低电平构成的周期信号。
3.系统的分类:-时不变系统:输出不随时间变化而变化的系统。
-线性系统:满足叠加性质的系统。
-因果系统:输出仅依赖于当前和过去的输入的系统。
-稳定系统:有界的输入产生有界的输出的系统。
4.线性时不变系统的特性:-线性性质:满足叠加性质。
-时不变性:系统的输出只取决于输入信号的当前和过去的值。
-冲激响应:线性时不变系统对单位冲激信号的响应。
5.离散时间系统的表示:-差分方程:用差分方程表示离散时间系统。
-传输函数:用传输函数表示系统的输入和输出之间的关系。
6.离散时间信号的分析:-Z变换:将离散时间信号从时域变换到Z域的方法。
-序列的频率表示:幅度谱、相位谱和角频率。
7.连续时间系统的表示:-微分方程:用微分方程表示连续时间系统。
-传递函数:用传递函数表示系统的输入和输出之间的关系。
8.连续时间信号的分析:-傅里叶级数:将连续时间周期信号分解成一系列正弦和余弦函数的和。
-傅里叶变换:将连续时间非周期信号从时域变换到频域。
9.信号处理的应用:-通信系统:对信号进行调制、解调、编码、解码等处理。
-图像处理:对图像进行滤波、增强、压缩等处理。
-音频处理:对音频信号进行降噪、消除回声、变声等处理。
-生物医学信号处理:对生理信号如心电图、脑电图等进行分析和识别。
信号与系统知识点信号与系统是电子工程及相关学科中的重要基础知识,其主要研究对象是信号的产生、传输、处理和分析,以及系统的特性和响应。
本文将探讨一些与信号与系统相关的重要知识点。
一、信号的分类信号是信息的表达方式,可以分为连续信号和离散信号。
连续信号是在时间和幅度上都是连续变化的,如模拟音频信号。
离散信号则是在时间或幅度上存在着间隔,如数字音频信号。
二、信号的表示和性质信号可以用数学函数进行表示,常见的信号类型有周期信号和非周期信号。
周期信号以某种周期性重复出现,如正弦信号;非周期信号则无规则的重复性。
信号还具有幅度、频率和相位等性质,这些性质对信号的分析和处理非常重要。
三、系统的响应系统是对输入信号做出某种处理的过程,系统的响应可以分为时域响应和频域响应。
时域响应是指系统对输入信号随时间的响应过程,可以通过巴特沃斯滤波器等工具进行分析。
频域响应则是指系统对不同频率的输入信号的响应情况,可以通过傅里叶变换等方法进行分析。
四、系统的特性系统的特性是描述系统行为的重要指标,主要包括线性与非线性、时不变与时变、稳定与不稳定等。
线性系统具有叠加性和比例性,输入和输出之间存在着线性关系;非线性系统则没有这种特性。
时不变系统的性质不随时间变化,稳定系统的输出有界且收敛于有限值,而不稳定系统则可能产生无界的输出。
五、卷积与相关卷积和相关是信号与系统分析中常用的运算符号。
卷积表示两个信号的叠加与重叠,它可以用于系统的输入与输出之间的关系描述。
相关则是通过计算信号之间的相似性,用于信号的匹配与识别。
六、傅里叶变换傅里叶变换是信号与系统分析中最重要的数学工具之一。
它可以将信号从时域转换到频域,使得信号的频率特性更加清晰。
傅里叶变换有连续傅里叶变换和离散傅里叶变换两种形式,分别适用于连续信号和离散信号的频域分析。
七、采样与重构采样和重构是数字信号处理中常用的技术。
采样是将连续信号转换为一系列离散的采样点,重构则是通过这些离散采样点还原出原始信号。
傅⽴叶变换,时域,频域=================================信号分析⽅法概述通信的基础理论是信号分析的两种⽅法:1 是将信号描述成时间的函数,2是将信号描述成频率的函数。
也有⽤时域和频率联合起来表⽰信号的⽅法。
时域、频域两种分析⽅法提供了不同的⾓度,它们提供的信息都是⼀样,只是在不同的时候分析起来哪个⽅便就⽤哪个。
思考:原则上时域中只有⼀个信号波(时域的频率实际上是开关器件转动速度或时钟循环次数,时域中只有周期的概念),⽽对应频域(纯数学概念)则有多个频率分量。
⼈们很容易认识到⾃⼰⽣活在时域与空间域之中(加起来构成了三维空间),所以⽐较好理解时域的波形(其参数有:符号周期、时钟频率、幅值、相位)、空间域的多径信号也⽐较好理解。
但数学告诉我们,⾃⼰⽣活在N维空间之中,频域就是其中⼀维。
时域的信号在频域中会被对应到多个频率中,频域的每个信号有⾃⼰的频率、幅值、相位、周期(它们取值不同,可以表⽰不同的符号,所以频域中每个信号的频率范围就构成了⼀个传输信道。
时域中波形变换速度越快(上升时间越短),对应频域的频率点越丰富。
所以:OFDM中,IFFT把频域转时域的原因是:IFFT的输⼊是多个频率抽样点(即各⼦信道的符号),⽽IFFT之后只有⼀个波形,其中即OFDM符号,只有⼀个周期。
时域 时域是真实世界,是惟⼀实际存在的域。
因为我们的经历都是在时域中发展和验证的,已经习惯于事件按时间的先后顺序地发⽣。
⽽评估数字产品的性能时,通常在时域中进⾏分析,因为产品的性能最终就是在时域中测量的。
时钟波形的两个重要参数是时钟周期和上升时间。
时钟周期就是时钟循环重复⼀次的时间间隔,通产⽤ns度量。
时钟频率Fclock,即1秒钟内时钟循环的次数,是时钟周期Tclock的倒数。
Fclock=1/Tclock 上升时间与信号从低电平跳变到⾼电平所经历的时间有关,通常有两种定义。
⼀种是10-90上升时间,指信号从终值的10%跳变到90%所经历的时间。
摘要如果您刚刚接触信号完整性分析,或者需要温习这方面的基础知识,那么本白皮书将是您的最佳选择。
在介绍基础知识之前,本白皮书首先回答一个最基本的问题“我需要了解哪些信息”?在基础知识部分,我们首先学习关键网络的识别和分析。
接着讨论传输线,以及因快速边缘率信号所产生的高频噪声引起的各种问题。
最后,我们将了解阻抗的概念,并在阻抗和信号完整性的背景下展开讨论。
现在,让我们从零开始学习信号完整性基础知识。
在开始任何类型的仿真或分析之前,您必须做好哪些准备工作,了解哪些信息呢?您的设计中可能包含成千上万个网络,需要全部进行仿真吗?恐怕不是—您没有足够的时间完成这项工作,事实上也完全没有必要。
因此,您要做的第一件事是确定您的关注对象—设计中究竟哪些是“关键”网络,如何识别这些“关键”网络?关键网络乍一看,“什么是关键网络”,答案似乎并不复杂。
我听到过各种各样的答案,譬如“时钟网络”、“高频网络”、“所有网络都很关键”、“频率超过100 MHz 的网络”,诸如此类,不胜枚举。
这些回答固然有一定的可取之处,但数字印刷电路板有一项您必须考虑的标志性网络特征,即边缘率和走线长度之间的关系。
些网络可能导致信号完整性 (SI) 或电磁干扰(EMI) 方面的问题时,您需要了解开关信号的速度,以确定是否需要首先关注该网络。
当今的硅工艺已纵深扩展至次微米空间,器件的物理特性决定了信号的边缘率越来越快。
归根到底,这意味着您的设计中可能存在问题的网络数量将远远超出您最初的设想。
因此,我们需要一些标准来识别关键网络。
那么,我们应该在哪里寻找这些信息来判断我们的分析对象呢?数据表提供了最快捷的器件管脚特性参考资料。
您可以在这些文档中找到电压摆幅、转换速率/开关时间、输入阻抗以及其他大量信息。
然后,您需要将这些开关数据与走线长度进行比较,确定是否存在问题。
这听起来有些复杂,甚至可能相当繁琐(如果必须手动完成此工作,的确如此)。
这时,您需要使用工具来提供帮助。