空间向量的距离和夹角公式
- 格式:pptx
- 大小:276.68 KB
- 文档页数:16
—的平而角“a®牆用向量方法求空间角和距离在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解 法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向 量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,木专题将运用 向量方法简捷地解决这些问题.1求空间角问题空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角.(1)求异而直线所成的角.=arcsinli I/II H I法一、在Q 内N 丄/,在0内b 丄/,其方向如图,则二面角设方、乙分别为异而直线a 、b 的方向向量, a 则两异而直线所成的角 a — arccos 1 而Q 所成的角方向向量,;;是平而&的法 (3)求二而法二、设入云是二而角a-/-0的两个半平而的法向量,其方向一个指向内侧,另一个指向外侧,则二面角a-1-p的平而角a =arccos彳"22求空间距离问题构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异而直线间的距离、线而距离;而而距离都可化为点而距离来求.(1)求点而距离法一、设;;是平面Q的法向量,在a内取一点B,则A■ ■■I“・•到&的距离d =1 AB II cos 0\=空叫\n\法二、设AO丄a于O,利用AO丄a和点0在&内的向量表示,可确定点O的位置,从而求出I走1・(2)求异而直线的距离二 ___ ?—法一、找平而0使比0且砂0,则异而直线a、b的距离就转化为直线a到平面0的距离,又转化为点A到平面0的距离.法二、在a上取一点A,在b上取一点B,设方、b分别为异面直线a、b的方向向量,求;;(万丄方,齐丄乙),则・・D于点而距异而直线a、b的距离心而llcos弘空叫(此方法移植丨川(I )求异而直线DE 与FG 所成的角;rh 向量法求空间距离和角例1.如图,在棱长为2的正方体ABCD-gCQ 中,分别是棱4久心的中点•(II )求g 和ffiEFBD 所成的角;(III)求Q 到面EFBD 的距离解:(I )记异而直线DE 与g 所成的角为—则&等于向量码运的夹角或其补角,■ D E.FC 、|cos a =1—:_ I \DE\.\FC {\(II)缈初万冷万石)•(两霸頁艸坐标系D-小, —I 一 ・• II DE bl FC [丨呢= (1,0,2),面= (220)设面E 単翌進|=二・・・a 回風X^s£=("l ) A /5V5 5— _v 、 DE ・H = 0<DB • /z = 0得 7 = (-221)又 BC ; = (-2,0,2)记g 和而EFBD 所成的角为&则 sin 0 =1 cos 〈BC], n) 1=1 ."9 ? 1=I BC { II7? I 2 ・•・Bq 和面EFBD 所成的角为冬.4(III)点目到ffiEFBD 的距离d 等于向量丽;在而EFBD 的法向量上的投影的绝对值,BiTl 33.完成这3道小题后, 总结:例2・己知A BCD 是边长为1的正方形,四边形DA ・ q=0DC ・ q = 0向量法求空间距离和角设计说明:1・作为本专题的例1,首先选择以一个容易建立空间直角坐标系 的多而体 正方体为载体,来说明空间角和距离的向量求法易于学生理解.2.解决(1)后,可让学生进一步求这两条异而直线的距离,并让学生体会一下:如果用传统方法恐怕很难(不必多讲,高考对公垂线的作法不作要求).角、距离还是证明平行、垂直(是前者的特殊情况),都可用向量方法来解决, 向量方法可以人人学会,它程序化,不需技巧.AA'B'B 是矩形,平丄平面A3CD 。
空间向量的夹角与距离求解公式1.空间向量的夹角与距离求解公式【知识点的认识】1.空间向量的夹角公式→→设空间向量푎=(a1,a2,a3),푏=(b1,b2,b3),→→cos<푎,푏>=→→푎⋅푏→→|푎|⋅|푏|=푎1푏1+푎2푏2+푎3푏3푎12+푎22+푎32⋅푏12+푏22+푏32注意:→→→→(1)当 cos<푎,푏>= 1时,푎与푏同向;→→→→(2)当 cos<푎,푏>=― 1时,푎与푏反向;→→→→(3)当 cos<푎,푏>= 0时,푎⊥푏.2.空间两点的距离公式设A(x1,y1,z1),B(x2,y2,z2),则→퐴퐵=(푥2―푥1,푦2―푦1,푧2―푧1)→d A,B=|퐴퐵| =→퐴퐵⋅→퐴퐵=(푥2―푥1)2+(푦2―푦1)2+(푧2―푧1)2.【解题思路点拨】1.求空间两条直线的夹角建系→写出向量坐标→利用公式求夹角2.求空间两点的距离建系→写出点的坐标→利用公式求距离.【命题方向】(1)利用公式求空间向量的夹角→→例:已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量퐴퐵与퐴퐶的夹角为()1/ 3A.30°B.45°C.60°D.90°→→→分析:由题意可得:퐴퐵=(0,3,3),퐴퐶=(―1,1,0),进而得到퐴퐵⋅→→→→→퐴퐶与|퐴퐵|,|퐴퐶|,再由cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→可得答案.|퐴퐵||퐴퐶|解答:因为A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),所以→→퐴퐵=(0,3,3),퐴퐶=(―1,1,0),→所以퐴퐵⋅→→→퐴퐶═0×(﹣1)+3×1+3×0=3,并且|퐴퐵|=3 2,|퐴퐶| = 2,→→所以 cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→|퐴퐵||퐴퐶|=332×2=12,→→∴퐴퐶的夹角为 60°퐴퐵与故选C.点评:解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题.(2)利用公式求空间两点的距离例:已知空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),则A,B 两点间的距离是()A.3B. 29C.25D.5分析:求出AB 对应的向量,然后求出AB 的距离即可.解答:因为空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),→→所以퐴퐵=(﹣3,0,﹣4),所以|퐴퐵|=(―3)2+02+(―4)2= 5.故选D.点评:本题考查空间两点的距离求法,考查计算能力.2/ 33/ 3。
用空间向量研究距离,夹角问题公式
对于距离和夹角问题的研究,空间向量提供了一种有效的方法。
空间向量是指具有方向和大小的矢量,可以用来表示在三维空间中的物理量或者几何对象。
首先,我们来讨论两个点之间的距离问题。
在空间向量中,两个点的距离可以通过计算它们的欧几里得距离来确定。
欧几里得距离是指从一个点到另一个点的直线距离。
如果我们将两个点表示为向量A和向量B,那么它们之间的欧几里得距
离可以使用以下公式计算:
距离 = |向量AB| = √((Bx-Ax)^2 + (By-Ay)^2 + (Bz-Az)^2)
其中,Ax、Ay、Az分别表示向量A的x、y、z坐标,Bx、By、Bz分别表示
向量B的x、y、z坐标。
通过这个公式,我们可以计算出两个向量之间的距离。
接下来,让我们来看一下关于夹角问题的公式。
在空间向量中,可以使用两个向量的点积和模长之间的关系来计算它们之间的夹角。
如果我们将两个向量表示为向量A和向量B,它们的夹角可以通过以下公式计算:
夹角θ = arccos((向量A·向量B) / (|向量A| × |向量B|))
其中,向量A·向量B表示两个向量的点积,|向量A|和|向量B|分别表示向量A 和向量B的模长。
通过这个公式,我们可以确定两个向量之间的夹角。
通过使用上述的距离和夹角问题的公式,我们可以将空间向量用于研究并解决各种几何和物理问题。
这些公式能够提供详细而完整的信息,帮助我们深入了解空间中不同物体之间的距离和夹角关系。
无论是在几何学、物理学还是其他相关领域,空间向量的研究都具有重要的应用价值。
空间向量夹角公式大全空间向量是三维空间中的向量,它们具有长度和方向。
在空间中,向量之间的夹角是一个重要的概念,它可以帮助我们理解向量之间的关系,以及在实际问题中的应用。
本文将介绍空间向量夹角的相关概念和公式,帮助读者更好地理解和运用空间向量的知识。
1. 向量的夹角概念。
在二维平面中,我们可以通过向量的数量积来计算它们之间的夹角。
而在三维空间中,向量的夹角的计算则需要借助向量的数量积和向量的模长来进行。
具体而言,设有两个向量a和b,它们之间的夹角θ满足以下公式:cosθ = (a·b) / (|a| |b|)。
其中,a·b表示向量a和b的数量积,|a|和|b|分别表示向量a和b的模长。
这个公式可以帮助我们计算任意两个向量之间的夹角,从而更好地理解它们之间的关系。
2. 向量夹角的计算方法。
在实际问题中,我们可能需要计算两个向量之间的夹角,以便解决一些几何或物理问题。
为了方便计算,我们可以通过向量的坐标表示来求解夹角。
具体而言,设向量a和b的坐标分别为(a1, a2, a3)和(b1, b2, b3),则它们之间的夹角θ可以通过以下公式计算:cosθ = (a1b1 + a2b2 + a3b3) / (sqrt(a1^2 + a2^2 + a3^2) sqrt(b1^2 + b2^2 + b3^2))。
这个公式可以帮助我们在实际问题中快速准确地计算出向量之间的夹角,从而更好地应用空间向量的知识。
3. 向量夹角的性质。
除了计算向量夹角的公式外,向量夹角还具有一些重要的性质。
首先,向量夹角的范围是[0, π],即夹角的取值范围在0到180度之间。
其次,当两个向量夹角为0时,它们是共线的;当夹角为π/2时,它们是垂直的;当夹角为π时,它们是相反的。
这些性质可以帮助我们更好地理解和判断向量之间的关系。
4. 应用举例。
最后,我们通过一个具体的应用举例来展示空间向量夹角的计算和应用。
假设有两个向量a(1, 2, 3)和b(4, 5, 6),我们需要计算它们之间的夹角。
空间向量cos夹角公式计算方法在三维空间中,向量是一个非常重要的概念,它不仅可以用来表示空间中的方向和长度,还可以用来描述物理量的大小和方向。
在实际应用中,我们经常需要计算两个向量之间的夹角,而cos夹角公式是一种非常常用的计算方法。
一、空间向量的概念空间向量是指在三维空间中,由起点和终点确定的有向线段。
通常用一个有序数对表示:PQ = (x2-x1, y2-y1, z2-z1)其中P为起点,Q为终点,PQ表示从P指向Q的有向线段。
向量的长度常常表示为|PQ|或者||PQ||,表示起点到终点的距离。
二、向量的加减法向量的加减法是指将两个向量相加或相减的运算。
向量加法的结果是一个新的向量,其坐标分别是两个向量对应坐标之和。
例如:PQ + QR = PR其中PQ和QR是两个向量,PR是它们的和向量。
向量减法的结果也是一个新的向量,其坐标分别是两个向量对应坐标之差。
例如:PQ - QR = PR其中PQ和QR是两个向量,PR是它们的差向量。
三、向量的数量积向量的数量积是指两个向量的点积或者内积,表示它们之间的相似程度。
向量的点积的计算公式为:A·B = |A||B|cosθ其中A和B是两个向量,|A|和|B|分别表示它们的长度,θ表示它们之间的夹角。
四、空间向量cos夹角公式的推导对于两个向量A(x1, y1, z1)和B(x2, y2, z2),它们之间的夹角θ可以用空间向量cos夹角公式计算:cosθ = (A·B) / (|A||B|)其中A·B表示向量A和向量B的数量积,|A|和|B|分别表示它们的长度。
下面我们来推导一下这个公式。
首先,由向量的数量积公式可得:A·B = |A||B|cosθ将A·B除以|A||B|得:cosθ = (A·B) / (|A||B|)将A和B的坐标代入上式中,得到:cosθ = (x1x2 + y1y2 + z1z2) / (sqrt(x1^2 + y1^2 +z1^2) * sqrt(x2^2 + y2^2 + z2^2))这就是空间向量cos夹角公式的推导过程。
两个向量之间的夹角公式
在数学和物理学中,我们经常需要计算两个向量之间的夹角。
夹角的大小可以告诉我们这两个向量之间的关系,对于很多问题都
具有重要的意义。
在二维和三维空间中,两个向量之间的夹角可以
通过向量的数量积(点积)和向量的模来计算。
假设有两个向量a和b,它们之间的夹角用θ表示。
那么,我
们可以通过以下公式来计算这两个向量之间的夹角:
cos(θ) = (a·b) / (|a| |b|)。
其中,a·b表示a和b的数量积(点积),|a|和|b|分别表示
a和b的模,即它们的长度。
θ表示两个向量之间的夹角。
这个公式的推导可以通过向量的数量积定义和余弦定理来得到。
通过这个公式,我们可以很方便地计算任意两个向量之间的夹角,
不论是在二维空间还是三维空间中。
在实际应用中,计算两个向量之间的夹角可以帮助我们解决很
多问题,比如在物理学中计算力的方向,工程学中计算物体的运动
方向等等。
因此,夹角公式是一个非常重要且实用的数学工具。
总之,通过夹角公式,我们可以轻松地计算任意两个向量之间的夹角,这对于解决实际问题具有重要的意义。
希望通过这个公式的介绍,你能对向量夹角的计算有更深入的了解。
线到面的距离公式空间向量
空间向量的夹角公式:cosθ=a*b/(|a|*|b|)1、a=(x1,y1,z1),b=(x2,y2,z2)。
a*b=x1x2+y1y2+z1z2 2、|a|=√(x1^2+y1^2+z1^2),|b|=√(x2^2+y2^2+z2^2)。
3、
cosθ=a*b/(|a|*|b|)
1.直线与面的夹角:求出直线的一个方向向量l和平面的一个法向量n,用向量的夹角公式求出两个向量夹角余弦cos=m直线与平面所成角π/2-arccos|m|。
2.二面角:分别谋出来两个平面的法向量m,n利用公式谋出来两个法向量夹角余弦cos,二面角的平面角与两法向量夹角成正比或优势互补,(融合图确认,若两法向量同时指
向平面外或内则优势互补;若一个指向内一个指向外则成正比)。
3.点到面距离:设平面外一点a,找到平面内任意一点b,求出向量ab坐标,求平面一
个法向量n,则点a到平面距离d=|ab*n|/|n|。
4.线面平行的距离其实也就是点面距离(直线上任一一点至平面距离),所以带发修
行和点面距离方法一样,a在直线上投,b在平面内挑,先至面的距离d=|ab*n|/|n|(*则表
示数量内积,还有些向量符号没标箭头,你能够看看明白不)。
长度为0的向量叫做零向量,记为0。
模为1的向量称为单位向量。
与向量a长度相
等而方向相反的向量,称为a的相反向量。
记为-a方向相等且模相等的向量称为相等向量。
空间向量的夹角和距离公式
cosθ = (A·B) / (,A, * ,B,)
其中,A·B表示向量A和向量B的点乘,A,和,B,表示向量A和向量B的模。
点乘的计算方法如下:
A·B=A1*B1+A2*B2+A3*B3
其中,A1、A2、A3和B1、B2、B3分别表示向量A和向量B的三个分量。
模的计算方法如下:
A,=√(A1^2+A2^2+A3^2)
B,=√(B1^2+B2^2+B3^2)
其中,^2表示求平方根的操作。
夹角θ的取值范围是[0,π],即0到180度。
此外,空间向量的夹角还可以通过向量的叉乘计算。
设有两个三维向量A和B,它们的夹角θ可以通过以下公式计算:
sinθ = ,A × B, / (,A, * ,B,)
其中,A×B表示向量A和向量B的叉乘。
叉乘的计算方法如下:
A×B=(A2*B3-A3*B2,A3*B1-A1*B3,A1*B2-A2*B1)
其中,A1、A2、A3和B1、B2、B3分别表示向量A和向量B的三个分量。
距离公式:
两点A(x1,y1,z1)和B(x2,y2,z2)之间的距离可以通过以下公式计算:d=√((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)
其中,^2表示求平方根的操作。
这个公式适用于二维和三维空间的点之间的距离计算。
总结起来,空间向量的夹角可以通过点乘和叉乘计算,距离可以通过
坐标差的平方和再开方计算。
这些公式在物理学、几何学和计算机图形学
等领域有广泛应用。