空间向量的夹角和距离公式
- 格式:ppt
- 大小:1.31 MB
- 文档页数:16
§9.6空间向量的坐标运算 (2)【教学目的】 (1)掌握空间向量的模长公式、夹角公式、两点间的距离公式,会用这些公式解决有关问题;(2)会根据向量的坐标判断两个向量共线或垂直【教学重点】夹角公式、距离公式【教学难点】模长公式、夹角公式、两点间的距离公式及其运用【课型】新授课【教学过程】(一)复习引入:空间向量的数量积有哪些重要性质?(二) 新课: 1 模长公式:若123(,,)a a a a =,123(,,)b b b b =,则2||a a a a =⋅=+2||b b b b =⋅=+.2.夹角公式:2cos ||||a b a b a b a⋅⋅==⋅+ 3.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB x ==或,A B d =例1 已知(3,3,1)A ,(1,0,5)B , 求:(1)线段AB 的中点坐标和长度;(2)到,A B 两点的距离相等的点(,,)P x y z 的坐标,,x y z 满足的条件解:点评:到,A B 两点的距离相等的点(,,)P x y z 构成的集合就是线段AB 的中垂面,若将点P 的坐标,,x y z 满足的条件46870x y z +-+=的系数构成一个向量(4,68)a =-,发现与(2,3,4)AB =--共线例2.如图正方体1111ABCD A B C D -中,11111114B E D F A B ==,求1BE 与1DF 所成角的余弦例3.已知三角形的顶点是(1,1,1)A -,(2,1,1)B -,(1,1,2)C ---,试求这个三角形的面积 分析:可用公式1||||sin 2S AB AC A =⋅⋅来求面积 解:,点评:三角形的内角可看成由该角的顶点出发的两边所在向量的夹角课堂练习: 1若(3cos ,3sin ,1)A θθ,(2cos ,2sin ,1)B θθ,求||AB 的取值范围;2.已知(,2,0)a x =,2(3,2,)b x x =-,且a 与b 的夹角为钝角,求x 的取值范围;3.若(cos ,sin ,2sin )P ααα,(2cos ,2sin ,1)Q ββ,求||PQ 的最大值和最小值4.求证:如果两条直线同垂直于一个平面,则这两条直线平行.已知:直线OA ⊥平面α,直线BD ⊥平面α,O 、B 为垂足.求证:OA //BD .证明:以点O 为原点,以射线OA 为非负z 轴,建立空间直角坐标系O -xyz ,i ,j ,k 为沿x 轴,y 轴,z 轴的坐标向量,且设BD =),,(z y x .∵BD ⊥α,∴⊥i ,⊥j , ∴BD ·i =),,(z y x ·(1,0,0)=x =0,BD ·j =),,(z y x ·(0,1,0)=y =0,∴=(0,0,z ).∴=z k .即//k .由已知O 、B 为两个不同的点,∴OA //BD .说明:⑴请注意此例建立空间直角坐标系的方法,这是今后解题时常用的方法;⑵如果表示一个向量的有向线段所在直线垂直于平面α,则表示该向量所有的有向线段所在直线都垂直于α.如果表示向量a 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a ⊥α. 如果a ⊥α,那么向量a 叫做平面α的法向量.1.空间向量的模长公式、两点间的距离公式的形式与平面向量中相关内容一致,因此可类比记忆;2.在计算异面直线所成角时,仍然用向量数量积的知识,建立空间直角坐标系后能方便的求出向量的坐标,则通常考虑用坐标运算来求角3.对于一些较特殊的几何体或平面图形中有关夹角,距离,垂直,平行的问题,都可以通过建立坐标系将其转化为向量间的夹角,模,垂直,平行的问题,从而利用向量的坐标运算求解,并可以使解法简单化.值得注意的是——坐标系的选取要合理、适当.作业:《数学之友》第167页。
空间向量的夹角与距离求解公式1.空间向量的夹角与距离求解公式【知识点的认识】1.空间向量的夹角公式→→设空间向量푎=(a1,a2,a3),푏=(b1,b2,b3),→→cos<푎,푏>=→→푎⋅푏→→|푎|⋅|푏|=푎1푏1+푎2푏2+푎3푏3푎12+푎22+푎32⋅푏12+푏22+푏32注意:→→→→(1)当 cos<푎,푏>= 1时,푎与푏同向;→→→→(2)当 cos<푎,푏>=― 1时,푎与푏反向;→→→→(3)当 cos<푎,푏>= 0时,푎⊥푏.2.空间两点的距离公式设A(x1,y1,z1),B(x2,y2,z2),则→퐴퐵=(푥2―푥1,푦2―푦1,푧2―푧1)→d A,B=|퐴퐵| =→퐴퐵⋅→퐴퐵=(푥2―푥1)2+(푦2―푦1)2+(푧2―푧1)2.【解题思路点拨】1.求空间两条直线的夹角建系→写出向量坐标→利用公式求夹角2.求空间两点的距离建系→写出点的坐标→利用公式求距离.【命题方向】(1)利用公式求空间向量的夹角→→例:已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量퐴퐵与퐴퐶的夹角为()1/ 3A.30°B.45°C.60°D.90°→→→分析:由题意可得:퐴퐵=(0,3,3),퐴퐶=(―1,1,0),进而得到퐴퐵⋅→→→→→퐴퐶与|퐴퐵|,|퐴퐶|,再由cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→可得答案.|퐴퐵||퐴퐶|解答:因为A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),所以→→퐴퐵=(0,3,3),퐴퐶=(―1,1,0),→所以퐴퐵⋅→→→퐴퐶═0×(﹣1)+3×1+3×0=3,并且|퐴퐵|=3 2,|퐴퐶| = 2,→→所以 cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→|퐴퐵||퐴퐶|=332×2=12,→→∴퐴퐶的夹角为 60°퐴퐵与故选C.点评:解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题.(2)利用公式求空间两点的距离例:已知空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),则A,B 两点间的距离是()A.3B. 29C.25D.5分析:求出AB 对应的向量,然后求出AB 的距离即可.解答:因为空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),→→所以퐴퐵=(﹣3,0,﹣4),所以|퐴퐵|=(―3)2+02+(―4)2= 5.故选D.点评:本题考查空间两点的距离求法,考查计算能力.2/ 33/ 3。
用空间向量研究距离,夹角问题公式
对于距离和夹角问题的研究,空间向量提供了一种有效的方法。
空间向量是指具有方向和大小的矢量,可以用来表示在三维空间中的物理量或者几何对象。
首先,我们来讨论两个点之间的距离问题。
在空间向量中,两个点的距离可以通过计算它们的欧几里得距离来确定。
欧几里得距离是指从一个点到另一个点的直线距离。
如果我们将两个点表示为向量A和向量B,那么它们之间的欧几里得距
离可以使用以下公式计算:
距离 = |向量AB| = √((Bx-Ax)^2 + (By-Ay)^2 + (Bz-Az)^2)
其中,Ax、Ay、Az分别表示向量A的x、y、z坐标,Bx、By、Bz分别表示
向量B的x、y、z坐标。
通过这个公式,我们可以计算出两个向量之间的距离。
接下来,让我们来看一下关于夹角问题的公式。
在空间向量中,可以使用两个向量的点积和模长之间的关系来计算它们之间的夹角。
如果我们将两个向量表示为向量A和向量B,它们的夹角可以通过以下公式计算:
夹角θ = arccos((向量A·向量B) / (|向量A| × |向量B|))
其中,向量A·向量B表示两个向量的点积,|向量A|和|向量B|分别表示向量A 和向量B的模长。
通过这个公式,我们可以确定两个向量之间的夹角。
通过使用上述的距离和夹角问题的公式,我们可以将空间向量用于研究并解决各种几何和物理问题。
这些公式能够提供详细而完整的信息,帮助我们深入了解空间中不同物体之间的距离和夹角关系。
无论是在几何学、物理学还是其他相关领域,空间向量的研究都具有重要的应用价值。
空间向量及常用公式(1)共线:.)0(//b a b b a λλ=⇔≠使存在实数(2)若1=++⇔++=z y x C B A P OC z OB y OA x op 是共面、、、,则四点(3)空间两个向量的夹角公式232221232221332211,cos b b b a a a b a b a b a b a ++++++>=<(4)直线AB 与平面所成角)(arcsin 的法向量为平面ααm m AB mAB ⋅=(5)的法向量),为平面或的平面角二面角βαπθβαn m n m nm n m nm l ,(arccos arccos ⋅⋅=--- (6)三余弦公式:21cos cos cos θθθ=(7)空间两点间的距离公式 212212212,222111)()()(,,,,z z y y x x AB AB AB d z y x B z y x A B A -+-+-=⋅==则)()(若(8))()()(122PQ b PA a l l P b a a b a a h l Q ==⋅-=,向量的方向向量上,直线在直线点距离到直线点(9)异面直线间的距离n nCD d ⋅=(21,l l 是两异面直线,其公垂向量为n ,C 、D 分别为21,l l 上任一点,D 为21,l l 间的距离)(10)点B 到平面α的距离)(ααα∈⋅=A AB n n nAB d 的一条斜线,是平面的法向量,为平面(11)异面直线上两点距离公式θcos 2222mn n m d AB -++=(12)面积射影定理 ),(cos θθ面角的为它们所在平面所成锐二、面积分别是平面多边形及其射影的S S S S ''=。
高中数学必修知识点空间向量知识点高中数学必修知识点:空间向量知识点在高中数学的学习中,空间向量是一个重要的知识板块。
它为我们解决空间几何问题提供了全新的思路和方法,使复杂的空间关系能够通过代数运算得以清晰展现。
接下来,让我们一起深入探索空间向量的奥秘。
一、空间向量的基本概念空间向量是指具有大小和方向的量。
与平面向量类似,空间向量也由起点和终点来确定。
但由于是在三维空间中,其表现形式更加丰富。
空间向量用有向线段来表示,有向线段的长度表示向量的模,也就是向量的大小。
而向量的方向则由有向线段的指向来确定。
在空间直角坐标系中,我们通常用坐标来表示空间向量。
若向量的起点坐标为$(x_1, y_1, z_1)$,终点坐标为$(x_2, y_2, z_2)$,则该向量的坐标为$(x_2 x_1, y_2 y_1, z_2 z_1)$。
二、空间向量的运算1、加法和减法空间向量的加法和减法遵循三角形法则或平行四边形法则。
两个向量相加或相减,其结果仍然是一个空间向量。
例如,若有向量$\overrightarrow{a}=(x_1, y_1, z_1)$,$\overrightarrow{b}=(x_2, y_2, z_2)$,则$\overrightarrow{a} +\overrightarrow{b} =(x_1 + x_2, y_1 + y_2, z_1 + z_2)$,$\overrightarrow{a} \overrightarrow{b} =(x_1 x_2, y_1 y_2, z_1 z_2)$。
2、数乘运算实数$\lambda$与空间向量$\overrightarrow{a}=(x, y, z)$的乘积$\lambda\overrightarrow{a}=(\lambda x, \lambda y, \lambda z)$。
数乘运算改变向量的大小,但不改变向量的方向(当$\lambda >0$时)或使向量反向(当$\lambda < 0$时)。
线到面的距离公式空间向量
空间向量的夹角公式:cosθ=a*b/(|a|*|b|)1、a=(x1,y1,z1),b=(x2,y2,z2)。
a*b=x1x2+y1y2+z1z2 2、|a|=√(x1^2+y1^2+z1^2),|b|=√(x2^2+y2^2+z2^2)。
3、
cosθ=a*b/(|a|*|b|)
1.直线与面的夹角:求出直线的一个方向向量l和平面的一个法向量n,用向量的夹角公式求出两个向量夹角余弦cos=m直线与平面所成角π/2-arccos|m|。
2.二面角:分别谋出来两个平面的法向量m,n利用公式谋出来两个法向量夹角余弦cos,二面角的平面角与两法向量夹角成正比或优势互补,(融合图确认,若两法向量同时指
向平面外或内则优势互补;若一个指向内一个指向外则成正比)。
3.点到面距离:设平面外一点a,找到平面内任意一点b,求出向量ab坐标,求平面一
个法向量n,则点a到平面距离d=|ab*n|/|n|。
4.线面平行的距离其实也就是点面距离(直线上任一一点至平面距离),所以带发修
行和点面距离方法一样,a在直线上投,b在平面内挑,先至面的距离d=|ab*n|/|n|(*则表
示数量内积,还有些向量符号没标箭头,你能够看看明白不)。
长度为0的向量叫做零向量,记为0。
模为1的向量称为单位向量。
与向量a长度相
等而方向相反的向量,称为a的相反向量。
记为-a方向相等且模相等的向量称为相等向量。
空间向量的夹角和距离公式
cosθ = (A·B) / (,A, * ,B,)
其中,A·B表示向量A和向量B的点乘,A,和,B,表示向量A和向量B的模。
点乘的计算方法如下:
A·B=A1*B1+A2*B2+A3*B3
其中,A1、A2、A3和B1、B2、B3分别表示向量A和向量B的三个分量。
模的计算方法如下:
A,=√(A1^2+A2^2+A3^2)
B,=√(B1^2+B2^2+B3^2)
其中,^2表示求平方根的操作。
夹角θ的取值范围是[0,π],即0到180度。
此外,空间向量的夹角还可以通过向量的叉乘计算。
设有两个三维向量A和B,它们的夹角θ可以通过以下公式计算:
sinθ = ,A × B, / (,A, * ,B,)
其中,A×B表示向量A和向量B的叉乘。
叉乘的计算方法如下:
A×B=(A2*B3-A3*B2,A3*B1-A1*B3,A1*B2-A2*B1)
其中,A1、A2、A3和B1、B2、B3分别表示向量A和向量B的三个分量。
距离公式:
两点A(x1,y1,z1)和B(x2,y2,z2)之间的距离可以通过以下公式计算:d=√((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)
其中,^2表示求平方根的操作。
这个公式适用于二维和三维空间的点之间的距离计算。
总结起来,空间向量的夹角可以通过点乘和叉乘计算,距离可以通过
坐标差的平方和再开方计算。
这些公式在物理学、几何学和计算机图形学
等领域有广泛应用。