第三章重力测量方法
- 格式:ppt
- 大小:6.77 MB
- 文档页数:48
物理实验测量物体的重力一、引言物理实验是物理学研究的基础,通过实验可以对物体的性质和行为进行观察和测量。
其中,测量物体的重力是物理实验的重要内容之一。
本文将介绍物理实验中测量物体重力的方法和步骤,以及实验中需要注意的事项。
二、实验目的本实验的目的是通过测量物体的重力,了解重力的概念和性质。
同时,通过实验,掌握测量物体重力的基本技巧和操作方法。
三、实验原理在地球上,物体的重力可以通过质量与重力加速度的乘积来计算。
重力加速度在地表附近近似为9.8 m/s²。
物体的质量可以通过天平等设备进行测量。
四、实验器材本实验所需的器材如下:1. 天平:用于测量物体的质量。
2. 细线:用于悬挂物体以测量其重力。
3. 卷尺:用于测量物体悬挂的垂直高度。
五、实验步骤1. 将天平放在水平的桌面上,并调整天平使其处于平衡状态。
2. 使用天平测量物体的质量,并记录结果。
3. 使用细线将物体悬挂起来,并确保物体悬挂处于自由垂直状态。
4. 使用卷尺测量物体悬挂的垂直高度,并记录结果。
5. 根据测量结果,计算物体的重力。
重力的计算公式为:重力 = 质量 ×重力加速度。
6. 将实验步骤2至5重复多次,以提高测量的准确性。
7. 计算多次测量结果的平均值,作为最终的测量结果。
六、实验注意事项1. 在测量物体质量时,应先将天平调整至平衡状态,并保持准确读数。
2. 在悬挂物体时,应确保细线不会产生明显的摆动,以保证测量的准确性。
3. 在测量垂直高度时,应尽量垂直且稳定地悬挂物体,并使用卷尺准确测量。
4. 在进行多次测量时,应保持实验条件的一致性,如使用相同的天平和细线。
5. 在计算重力时,应使用正确的单位,并进行精确计算。
七、实验结果与分析根据实验步骤中的操作,我们可以得到多次测量的物体重力数据。
对于每次测量结果,可以计算出对应的重力值。
然后,将多次测量结果的重力值进行平均,得到最终的测量结果。
实验结果的准确性取决于实验中的操作和测量的准确性。
第三章相互作用(上)(2020新版)(重力、弹力和摩擦力)前言:《李老师物理教学讲义》由李老师高中物理教研室一线教师根据本人多年教学经验,以及人教版教学大纲(最新版)和教材,精心编撰的教学讲义。
本讲义以教材内容为主线,附有大量经典例题和习题,并附有详细答案或解析。
本讲义主要供广大高中物理一线教师教学参考之用,任何自然人或法人未经本教研室许可不得随意转载或用于其它商业用途。
——李老师高中物理教研室一、重力和弹力1.力(1)力是物体与物体之间的相互作用。
在国际单位制中,力的单位是牛顿,简称牛,符号N。
(2)力的三要素:力的大小、方向和作用点。
(3)力的性质:例题1-1.(2019·南充高一期中)下列说法中正确的是()A.“风吹草动”,草受到了力,但没有施力物体,说明没有施力物体的力也是存在的B.运动员将足球踢出,球在空中飞行是因为球在飞行中受到一个向前的推力C.甲用力把乙推倒,只是甲对乙用力,而乙对甲没用力D.两个物体发生相互作用不一定相互接触答案:D例题1-2.如图所示,用球拍击打乒乓球时,如果以球为研究对象,则施力物体是( )A.人 B.球拍C.乒乓球 D.无法确定答案:B(4)力的图示和力的示意图力可以用有向线段表示。
有向线段的长短表示力的大小,箭头表示力的方向,箭尾(或箭头)表示力的作用点。
如图3.1-4,球所受的重力大小为6N,方向竖直向下。
这种表示力的方法,叫作力的图示。
在不需要准确标度力的大小时,通常只需画出力的作用点和方向,即只需画出力的示意图。
例题1-3.下图甲、乙中物体A的重力均为10 N,画出它所受重力的图示。
答案:如图所示例题1-4.(2019 -温州模拟)足球运动员已将足球踢向空中,在下图描述足球在向斜上方飞行过程中某时刻的受力图中,正确的是()答案:B(5)力的分类2.重力(1)定义:由于地球的吸引而使物体受到的力叫作重力(gravity),单位是牛顿,简称牛,符号用N表示。
《第三章 万有引力定律及其应用》知识要点一、关于天体运动的两种学说二、开普勒行星三大运动定律1、第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上。
2、第二定律(面积定律):行星和太阳之间的连线,在相等的时间内扫过相同的面积。
设行星轨道上任意两点的位置M 、N 到恒星的距离分别为M R 和N R ,对应的速度分别为M V 和N V N ,则有:M V M R =N R N V 。
3、第三定律(周期定律):行星绕太阳公转的周期的平方和轨道半长轴的立方成正比。
设行星轨道的半长轴为R ,公转周期为T ,则有:k=23TR ,K 为比例常数,且K 只与恒星质量有关,与行星无关。
三、万有引力定律1、内容:宇宙间任意两个有质量的物体间都存在相互吸引力,其大小与两个物体的质量的乘积成正比,与它们间距离的平方成反比。
2、表达式:F=2r Mm G 其中:G 称为万有引力常数,r 为两个物体的重心(或质心)之间的距离,且G=6.67×10-11N.m 2/kg 23、特性⑴普遍性:任何客观存在的物体间都存在着相互作用的吸引力,即“万有引力”。
⑵相互性:两物体间相互作用的引力是一对作用力与反作用力,它们的大小相等,方向相反,作用在同一条直线上,分别作用在两个不同的物体上。
⑶宏观性:在通常情况下,万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际的物理意义。
在分析地球表面的物体受力分析时, 不考虑地面物体间的万有引力,只考虑地球对地面物体的引力。
4、说明:⑴万有引力提供天体运动的向心力,应用表达式一般有:2r GMm =r V m 2 =2ϖmr =mV ω=224Tmr π=ma ⑵物体在行星表面时的重力约等于行星对物体的万有引力:mg =2RMm G即有:2gR GM =——称为黄金代换式 ⑶离天体某高度处的重力加速度g 的求法: 由mg h R Mm G =+2)( 得:2)(h R GM g += 5、应用:⑴计算天体的质量:★——测量带卫星的天体的质量:若已知卫星的运行周期T 和轨道半径r ,设天体质量为M ,卫星质量为m ,则有2224T mr r Mm G π= 得:2324GTr M π= ★——测量不带卫星的天体的质量,关键要测出天体表面的重力加速度g ——测量天体表面的重力加速度g 的常见方法① 利用竖直上抛运动规律在天体表面附近以初速度0V 竖直上抛,测出物体落回原抛出点的时间t ,则由:mg RMm G =2 g V t 02= 求得:Gt R V M 202= (R 为已知) ② 利用平抛运动规律在天体表面附近一定高度y 处以初速度0V 水平抛出,测出物体落地的水平距离x 和高度y ,则由:t V x 0= 221gt y = mg R Mm G =2 得:22202Gx R yV M = ③ 利用弹簧秤在天体表面附近用弹簧秤测出质量为m 的物体的重力0G ,则由:mg RMm G =2 mg G =0 得:mG R G M 20=★——测量天体的半径R设宇宙飞船沿天体表面运行一周的时间为T ,天体表面的重力加速度为g (g 的测量见上所述),则由:mg RMm G =2 2224T mR R Mm G π= 得:224πgT R = ⑵估测天体的平均密度:2224T mR R Mm G π= M=334R ρπ 得:ρ=23GTπ ⑶预测未知的天体——海王星的发现四、宇宙速度1、第一宇宙速度(环绕速度):gR R GM V == =7.9km/s注意7.9km/s <V <11.2km/s 时,卫星将绕地球做椭圆轨道运动。
第一节重力和弹力第一部分重力一、重力1.产生原因:重力是由于地球的吸引而使物体受到的力.但不能说成“重力就是地球对物体的吸引力”.2.大小:G=mg,g为重力加速度,g=9.8 m/s2,同一地点,重力的大小与质量成正比,不同地点因g值不同而不同.(注意:重力的大小与物体的运动状态无关,与物体是否受其他力无关)说明:(1)同一地点,不同物体重力的大小与其质量成正比。
(2)不同地点,同一物体在地面上所在位置的纬度越高,所受重力越大;在地球上空的位置海拔越高,重力越小。
(3)重力的大小与物体的运动状态无关,与物体是否受其他力无关。
3.方向:重力的方向总是竖直向下的(竖直向下不是垂直于支撑面向下,不一定指向地心).4.作用点:物体的各部分都受到重力的作用,从效果上看,我们可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心。
物体重心的位置与物体的形状及物体内质量的分布有关。
说明:(1)重心是重力的等效作用点,并非物体的全部重力都作用于重心。
(2)重心的位置可以在物体上,也可以在物体外,如一个圆形平板的重心在板上,而一个铜环的重心就不在环上。
(3)重心在物体上的相对位置与物体的位置、放置状态及运动状态无关,但一个物体的质量分布或形状发生变化时,其重心在物体上的位置也发生变化。
(4)重心的确定方法:质量分布均匀、形状规则的物体的重心在其几何中心上;对形状不规则的薄物体,可用支撑法或悬挂法来确定其重心。
5.重力的测量(1)测量工具:弹簧测力计是测量力的重要工具,物体的重力一般用它来测量。
(2)对应状态:要准确测量某物体的重力,应让它处于静止状态或者保持匀速直线运动状态。
(3)测量原理:处于静止状态或者保持匀速直线运动状态的物体所受力为平衡力,若物体只受重力及另外一个力,则另一个力与重力大小相等、方向相反,若知道另一个力,则可以知道重力。
(4)测量方法:将被测物体悬于弹簧测力计的下端或是放在弹簧测力计上,让它们处于静止状态或者保持匀速直线运动状态,读出弹簧测力计的示数就是物体的重力的大小。
高中物理重力的测量教案
年级:高中
课题:重力的测量
课时:1课时
教学目标:
1. 理解重力的概念和特点;
2. 掌握重力的测量方法;
3. 能够运用重力的测量方法进行实际操作。
教学重点:
1. 重力的定义和特点;
2. 重力的测量方法;
3. 实验操作。
教学准备:
1. 教科书、教学PPT等教学资料;
2. 重物、弹簧测力计等实验器材。
教学步骤:
一、导入(5分钟)
1. 通过引入一个悬空物体的情境,激发学生对重力的认识和疑问;
2. 提出问题:什么是重力?重力有什么特点?
二、讲解(10分钟)
1. 讲解重力的定义和特点;
2. 介绍重力的测量方法:弹簧测力计的使用原理和步骤。
三、实验(25分钟)
1. 让学生分组进行实验操作:利用弹簧测力计测量不同物体的重力;
2. 指导学生记录实验数据,并进行数据分析。
四、讨论(10分钟)
1. 引导学生讨论实验结果,总结重力的测量方法;
2. 鼓励学生提出问题,帮助学生深化对重力概念的理解。
五、总结(5分钟)
1. 总结本节课的重点内容;
2. 对学生的表现进行肯定和评价。
教学延伸:
1. 让学生自行设计重力的测量实验,并进行实践;
2. 引导学生思考重力测量的局限性和改进方法。
教学反思:
1. 在实验环节要注意学生的安全意识,确保实验设备的正确使用;
2. 要积极引导学生参与讨论和提问,促进思维发展和知识深化。
【教学结束】。
第三章地球运动地球绕地轴的旋转运动,叫做地球的自转。
地轴的空间位置基本上是稳定的。
它的北端始终指向北极星附近,地球自转的方向是自西向东;从北极上空看,呈逆时针方向旋转。
地球自转一周的时间,约为23小时56分,这个时间称为恒星日;然而在地球上,我们感受到的一天是24小时,这是因为我们选取的参照物是太阳。
由于地球自转的同时也在公转,这4分钟的差距正是地球自转和公转叠加的结果。
天文学上把我们感受到的这1天的24小时称为太阳日。
地球自转产生了昼夜更替。
昼夜更替使地球表面的温度不至太高或太低,适合人类生存。
地球自转的平均角速度为每小时转动15度。
在赤道上,自转的线速度是每秒465米。
天空中各种天体东升西落的现象都是地球自转的反映。
人们最早就是利用地球自转来计量时间的。
研究表明,每经过一百年,地球自转速度减慢近2毫秒,它主要是由潮汐摩擦引起的,潮汐摩擦还使月球以每年3~4厘米的速度远离地球。
地球自转速度除长期减慢外,还存在着时快时慢的不规则变化,引起这种变化的真正原因目前尚不清楚。
地球绕太阳的运动,叫做公转。
从北极上空看是逆时针绕日公转。
地球公转的路线叫做公转轨道。
它是近正圆的椭圆轨道。
太阳位于椭圆的两焦点之一。
每年1月3日,地球运行到离太阳最近的位置,这个位置称为近日点;7月4日,地球运行到距离太阳最远的位置,这个位置称为远日点。
地球公转的方向也是自西向东,运动的轨道长度是9.4亿千米,公转一周所需的时间为一年,约365.25天。
地球公转的平均角速度约为每日1度,平均线速度每秒钟约为30千米。
在近日点时公转速度较快,在远日点时较慢。
地球自转的平面叫赤道平面,地球公转轨道所在的平面叫黄道平面。
两个面的交角称为黄赤交角,地轴垂直于赤道平面,与黄道平面交角为66°34',或者说赤道平面与黄道平面间的黄赤交角为23°26',由此可见地球是倾斜着身子围绕太阳公转的。
【地球运动的表现】太阳和月亮,每天东升西落,这是常见的自然现象。
重力是指地球对物体产生的吸引力,是所有物质之间相互作用的一种形式。
测量物体质量是用来确定物体重力大小的重要步骤。
测量物体质量的单位是千克(kg),是国际标准单位。
在实际测量过程中,有许多不同的方法可以使用,包括天平、弹簧秤、电子秤等。
天平是一种用来测量物体质量的传统工具,它利用两个平衡的物体的平衡点来测量物体的重量和质量。
天平的基本原理是,在两个平衡的平面上平衡物体时,物体的质量就等于称重的重量。
弹簧秤与天平的原理相似,但它使用弹簧来测量物体的重力。
弹簧簧常数的改变会导致弹簧时力的变化, 利用物体在弹簧的拉张产生的引力描绘与平衡位置或比较给定的弹簧的移动量来测量物体的重量。
在跑步机、小型电梯等应用上,通常采用小型弹簧秤测量物体质量。
电子秤是一种现代化的测量器,它使用压力传感器、荷重细胞和电子传感器等元件以及微电脑控制器将测量信号转换为数字信号来测量物体的质量,采用最新的技术和计算机软件。
电子秤具有准确度高、灵敏度快、计算方便等优点,广泛应用于各行各业。
在测量物体质量时,还需要注意一些细节问题,例如物体所处的环境、电磁干扰等。
同时,为了保证测量的准确度,还必须对测量装置进行校准和调试,确保测量结果的精度和稳定性。
测量物体质量的方法有许多种,不同的方法适用于不同的场合。
作为物理学中的一个基本量,它在生产、科研、教学等领域有着广泛的应用和意义,我们应该善于使用这些测量方法,提高物理实验的效率和精度。