恒定磁场计算及案例分析
- 格式:pptx
- 大小:387.54 KB
- 文档页数:30
第 4 章恒定磁场4.2 真空中恒定磁场的基本方程应用举例半径为 a 的无限长直导体圆柱均匀通过电流 I ,计算导体内外的B 。
解: ⑴ 电流分布具有轴对称性,选柱坐标⑵ 分析磁场的分布 zaI⑶ 沿磁感应线取B 的线积分沿ϕ 方向 ∑⎰==∙I B c02d μπρl B ρ ≤ a 时222aIJ I ρπρ==∑2022022aI a I B πρμρπρμϕ==∴ρ ≥ a 时πρμϕ20IB =II =∑例1两相交圆柱,半径同为a ,轴线相距 c ,通过强度相等方向相反的电流 I ,因而相交部分J = 0。
证明相交区域是匀强磁场。
证: ⑴ 两圆柱单独存在时,均具有轴对称性,选两套柱坐标 ⑵ 计算相交区域任取一场点P 的磁感应 22101d a Icρμ=∙⎰l B 201221101221a I a I z πμρπρμϕρa a B ⨯==22202d aIcρμ=∙⎰l B2022222022)(22aI a I z πμρπρμϕρa a B ⨯-=-=202020*******)(a Ica I a I yz z πμπμπμa c a ρρa B B B =⨯=-⨯=+=例2 O 1 O 2 Pρ1 ρ2 ⊗ ⊙ I Iz x无限大平面上均匀分布面电流J s ,求距此平面 r 处的磁感应B 。
解: ⑴ 电流分布具有平面对称性,选直角坐标。
设J s = a z J s⑵ x >0,磁场方向沿 +y 轴;x <0,磁场方向沿 –y 轴⑶ 在xOy 上选取图示矩形回路lJ l B cs 02d μ==∙⎰l B 2s0J B μ=例 0, 20>x J y sa μ0, 20<-x J y sa μ=B z xy J zz xy J zl。