专题三 第1讲
- 格式:ppt
- 大小:1.68 MB
- 文档页数:66
第1讲 基本不等式与线性规划高考定位 高考对本内容的考查主要有:(1)基本不等式是C 级要求,理解基本不等式在不等式证明、函数最值的求解方面的重要应用;(2)线性规划的要求是A 级,理解二元一次不等式对应的平面区域,能够求线性目标函数在给定区域上的最值,同时对一次分式型函数、二次型函数的最值也要有所了解.真 题 感 悟1.(2017·江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析 一年的总运费与总存储费用之和为y =6×600x +4x =3 600x +4x ≥2 3 600x ×4x =240,当且仅当3 600x =4x ,即x =30时,y 有最小值240. 答案 302.(2016·江苏卷)已知实数x ,y 满足约束条件⎩⎨⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,那么x 2+y 2的取值范围是________.解析 作出实数x ,y 满足的可行域如图中阴影部分所示,则x 2+y 2即为可行域内的点(x ,y )到原点O 的距离的平方.由图可知点A 到原点O 的距离最近,点B 到原点O 的距离最远.点A 到原点O 的距离即原点O 到直线2x +y -2=0的距离d =|0-2|12+22=255,则(x 2+y 2)min =45;点B 为直线x -2y +4=0与3x -y -3=0的交点,即点B 的坐标为(2,3),则(x 2+y 2)max =13.综上,x 2+y 2的取值范围是⎣⎢⎡⎦⎥⎤45,13.答案 ⎣⎢⎡⎦⎥⎤45,133.(2016·江苏卷)已知函数f (x )=2x+⎝ ⎛⎭⎪⎫12x ,若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,则实数m 的最大值为________.解析 由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=(f (x ))2-2. ∵f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0, ∴m ≤(f (x ))2+4f (x )对于x ∈R 恒成立.又(f (x ))2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且(f (0))2+4f (0)=4,∴m ≤4,故实数m 的最大值为4. 答案 44.(2016·江苏卷)在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________.解析 因为sin A =2sin B sin C ,所以sin(B +C )=2sin B sin C , 所以sin B cos C +cos B sin C =2sin B sin C , 等式两边同时除以cos B cos C , 得tan B +tan C =2tan B tan C . 又因为tan A =-tan(B +C )=tan B +tan Ctan B tan C -1,所以tan A tan B tan C -tan A =2tan B tan C , 即tan B tan C (tan A -2)=tan A .因为A ,B ,C 为锐角,所以tan A ,tan B ,tan C >0, 且tan A >2,所以tan B tan C =tan A tan A -2,所以原式=tan 2Atan A -2.令tan A -2=t (t >0),则tan 2A tan A -2=(t +2)2t =t 2+4t +4t =t +4t +4≥8,当且仅当t =2,即tan A =4时取等号. 故tan A tan B tan C 的最小值为8. 答案 8考 点 整 合1.利用基本不等式求最值(1)如果x >0,y >0,xy =p (定值),当x =y 时,x +y 有最小值2p (简记为:积定,和有最小值).(2)如果x >0,y >0,x +y =s (定值),当x =y 时,xy 有最大值14s 2(简记为:和定,积有最大值).2.简单的线性规划问题解决线性规划问题首先要找到可行域,再根据目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域上的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.热点一 利用基本不等式求最值【例1】 (1)(2017·山东卷)若直线x a +y b =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.(2)(2017·苏州调研)已知正数x ,y 满足x +y =1,则4x +2+1y +1的最小值为________.解析 (1)∵直线x a +yb =1(a >0,b >0)过点(1,2), ∴1a +2b =1(a >0,且b >0),则2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b=4+b a +4a b ≥4+2b a ·4a b =8.当且仅当b a =4ab ,即a =2,b =4时上式等号成立. 因此2a +b 的最小值为8.(2)设x +2=m ,y +1=n ,m >2,n >1, 则m +n =x +2+y +1=4,4x +2+1y +1=4m +1n =⎝ ⎛⎭⎪⎫4m +1n ⎝ ⎛⎭⎪⎫m 4+n 4=54+n m +m 4n ≥54+2n m ·m 4n =94,当且仅当n m =m 4n ,m =83,n =43时取等号,故4x +2+1y +1的最小值为94. 答案 (1)8 (2)94探究提高 1.利用基本不等式求最值,要注意“拆、拼、凑”等变形,变形的原则是在已知条件下通过变形凑出基本不等式应用的条件,即“和”或“积”为定值,等号能够取得.2.特别注意:(1)应用基本不等式求最值时,若遇等号取不到的情况,则应结合函数的单调性求解.(2)若两次连用基本不等式,要注意等号的取得条件的一致性,否则会出错. 【训练1】 (1)(2017·天津卷)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________.(2)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为________. 解析 (1)∵a ,b ∈R ,ab >0, ∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. (2)依题意知a >0,b >0,则1a +2b ≥22ab =22ab ,当且仅当1a =2b ,即b =2a 时,“=”成立.∵1a +2b=ab,∴ab ≥22ab ,即ab ≥22,∴ab 的最小值为2 2. 答案 (1)4 (2)2 2热点二 简单的线性规划问题 [命题角度1] 求线性目标函数的最值【例2-1】 (1)(2017·天津卷改编)设变量x ,y 满足约束条件⎩⎨⎧2x +y ≥0,x +2y -2≥0,x ≤0,y ≤3,则目标函数z =x +y 的最大值为________.(2)(2017·全国Ⅰ卷)设x ,y 满足约束条件⎩⎨⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________.解析 (1)作出约束条件所表示的可行域如图中阴影部分所示,由z =x +y 得y =-x +z ,作出直线y =-x ,平移使之经过可行域,观察可知,最优解在B (0,3)处取得,故z max =0+3=3.(2)作出约束条件所表示的可行域如图中阴影部分所示,由z =3x -2y 得y =32x -z 2,求z 的最小值,即求直线y =32x -z2的纵截距的最大值,当直线y =32x -z2过图中点A 时,纵截距最大,由⎩⎨⎧2x +y =-1,x +2y =1解得A 点坐标为(-1,1),此时z =3×(-1)-2×1=-5. 答案 (1)3 (2)-5[命题角度2] 求非线性目标函数的最值【例2-2】 (2017·徐州、宿迁、连云港模拟)已知实数x ,y 满足⎩⎨⎧y ≤x -1,x ≤3,x +y ≥2,则y x 的取值范围是________.解析 不等式组对应的平面区域是以点(3,-1),(3,2)和⎝ ⎛⎭⎪⎫32,12为顶点的三角形及其内部,设z =yx ,则z 表示平面区域内的点与原点连线所在直线的斜率,则当z =y x 经过(3,-1)时取得最小值-13,经过点(3,2)时取得最大值23,故yx 的取值范围是⎣⎢⎡⎦⎥⎤-13,23.答案 ⎣⎢⎡⎦⎥⎤-13,23[命题角度3] 线性规划中的含参问题【例2-3】 (2017·南京师大附中模拟)设变量x ,y 满足约束条件⎩⎨⎧x +y ≤4,y ≥x ,x ≥1,若目标函数z =ax +y 的最小值为-2,则a =________.解析 约束条件对应的可行域是以点(1,1),(1,3)和(2,2)为顶点的三角形及其内部.当a ≥-1时,当目标函数y =-ax +z 经过点(1,1)时,z 取得最小值,则z min =a +1=-2,即a =-3(舍去);当a <-1时,当目标函数y =-ax +z 经过点(2,2)时,z 取得最小值,则z min =2a +2=-2,即a =-2,符合题意,故a =-2. 答案 -2探究提高 1.线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.2.对于线性规划中的参数问题,需注意:(1)当最值是已知时,目标函数中的参数往往与直线斜率有关,解题时应充分利用斜率这一特征加以转化.(2)当目标函数与最值都是已知,且约束条件中含有参数时,因为平面区域是变动的,所以要抓住目标函数及最值已知这一突破口,先确定最优解,然后变动参数范围,使得这样的最优解在该区域内即可.【训练2】 (1)(2017·山东卷改编)已知x ,y 满足约束条件⎩⎨⎧x -y +3≤0,3x +y +5≤0,x +3≥0,则z =x+2y 的最大值是________.(2)若实数x ,y 满足⎩⎨⎧2x -y +2≥0,2x +y -6≤0,0≤y ≤3,且z =mx -y (m <2)的最小值为-52,则m =________.解析 (1)由已知得约束条件的可行域如图中阴影部分所示,故目标函数z =x +2y 经过点C (-3,4)时取最大值z max =-3+2×4=5.(2)作出约束条件所表示的可行域如图中阴影部分所示,z =mx -y (m <2)的最小值为-52,可知目标函数的最优解过点A ,由⎩⎨⎧y =3,2x -y +2=0,解得A ⎝ ⎛⎭⎪⎫12,3,∴-52=m2-3,解得m =1. 答案 (1)5 (2)11.多次使用基本不等式的注意事项当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法. 2.基本不等式除了在客观题考查外,在解答题的关键步骤中也往往起到“巧解”的作用,但往往需先变换形式才能应用.3.解决线性规划问题首先要作出可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.一、填空题1.(2017·全国Ⅱ卷改编)设x ,y 满足约束条件⎩⎨⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是________.解析 可行域如图阴影部分所示,当直线y =-2x +z 经过点A (-6,-3)时,所求最小值为-15.答案 -152.若0<x <1,则当f (x )=x (4-3x )取得最大值时x 的值为________.解析 因为0<x <1,所以f (x )=x (4-3x )=13×3x (4-3x )≤13×⎝ ⎛⎭⎪⎫3x +4-3x 22=43,当且仅当3x =4-3x ,即x =23时取等号. 答案 233.(2017·海门中学检测)已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是________.解析 由题意知ab =1,所以m =b +1a =2b ,n =a +1b =2a ,所以m +n =2(a +b )≥4ab =4,当且仅当a =b =1时取等号. 答案 44.(2017·宿迁调研)若实数x ,y 满足xy +3x =3⎝ ⎛⎭⎪⎫0<x <12,则3x +1y -3的最小值是________.解析 由xy +3x =3可得y +3=3x ,又0<x <12,则y +3>6,y >3,所以3x +1y -3=y+3+1y -3=(y -3)+1y -3+6≥2(y -3)·1y -3+6=8,当且仅当y =4时取等号,故3x +1y -3的最小值是8.答案 85.(2017·无锡期末)设不等式组⎩⎨⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域为M ,若直线y =kx -2上存在M 内的点,则实数k 的取值范围为________.解析 平面区域M 是以点(1,1),(1,3)和(2,2)为顶点的三角形区域(含边界),直线y =kx -2,即k =y +2x 表示区域M 内的点(x ,y )与点(0,-2)连线的斜率.当经过点(2,2)时,k 取得最小值2;当经过点(1,3)时,k 取得最大值5,故实数k 的取值范围为[2,5]. 答案 [2,5]6.已知x ,y ∈R ,且x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围是________.解析 因为2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22,所以6-(x 2+4y 2)≤x 2+4y22,所以x 2+4y 2≥4,当且仅当x =2y 时取等号,又因为(x +2y )2=6+2xy ≥0,即2xy ≥-6,所以z =x 2+4y 2=6-2xy ≤12.综上可得4≤x 2+4y 2≤12. 答案 [4,12]7.(2017·北京卷)已知x ≥0,y ≥0,且x +y =1,则x 2+y 2的取值范围是________. 解析 法一 ∵x ≥0,y ≥0且x +y =1.∴2xy ≤x +y =1,从而0≤xy ≤14,因此x 2+y 2=(x +y )2-2xy =1-2xy ,所以12≤x 2+y 2≤1.法二 可转化为线段AB 上的点到原点距离平方的范围,AB 上的点到原点距离的范围为⎣⎢⎡⎦⎥⎤22,1,则x 2+y 2的取值范围为⎣⎢⎡⎦⎥⎤12,1.答案 ⎣⎢⎡⎦⎥⎤12,18.(2016·全国Ⅰ卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析 设生产产品A 、产品B 分别为x 件、y 件,利润之和为z 元,则⎩⎨⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,即⎩⎨⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N ,目标函数为z =2 100x +900y .作出不等式组表示的平面区域为图中阴影部分内(包括边界)的整点,即可行域. 由图可知当直线z =2 100x +900y 经过点M 时,z 取得最大值.联立方程组⎩⎨⎧10x +3y =900,5x +3y =600,得M 的坐标为(60,100),所以当x =60,y =100时,z max =2 100×60+900×100=216 000(元). 答案 216 000 二、解答题9.设关于x ,y 的不等式组⎩⎨⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求实数m 的取值范围. 解 先根据约束条件⎩⎨⎧2x -y +1>0,x +m <0,y -m >0画出可行域(图略), 要使可行域存在,必有m <-2m +1,要求可行域包含直线y =12x -1上的点,只要边界点(-m ,1-2m )在直线y =12x -1的上方,且(-m ,m )在直线y =12x -1的下方,故得不等式组⎩⎪⎨⎪⎧m <-2m +1,1-2m >-12m -1,m <-12m -1,解之得m <-23. 故实数m 的取值范围是⎝ ⎛⎭⎪⎫-∞,-23.10.(1)当点(x ,y )在直线x +3y -4=0上移动时,求3x +27y +2的最小值; (2)已知x ,y 都是正实数,且x +y -3xy +5=0,求xy 的最小值.解 (1)由x +3y -4=0,得x +3y =4,所以3x +27y +2=3x +33y +2≥23x ·33y +2=23x +3y +2=234+2=20, 当且仅当3x =33y 且x +3y -4=0,即x =2,y =23时取等号,此时所求的最小值为20.(2)由x +y -3xy +5=0,得x +y +5=3xy , 所以2xy +5≤x +y +5=3xy , 所以3xy -2xy -5≥0, 所以(xy +1)(3xy -5)≥0, 所以xy ≥53,即xy ≥259,当且仅当x =y =53时取等号,故xy 的最小值是259.11.(2017·天津卷)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? 解 (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧70x +60y ≤600,5x +5y ≥30,x ≤2y ,x ≥0,y ≥0,即⎩⎪⎨⎪⎧7x +6y ≤60,x +y ≥6,x -2y ≤0,x ≥0,y ≥0,该二元一次不等式组所表示的平面区域为图1中的阴影部分:(2)设总收视人次为z 万,则目标函数为z =60x +25y .考虑z =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-125,随z 变化的一族平行直线,z 25为直线在y 轴上的截距,当z25取得最大值时,z 的值最大. 又因为x ,y 满足约束条件,所以由图2可知,当直线z =60x +25y 经过可行域上的点M 时,截距z25最大,即z 最大.解方程组⎩⎨⎧7x +6y =60,x -2y =0,得点M 的坐标为(6,3).所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.。
专题三数列第一讲等差数列、等比数列[考情分析]等差数列、等比数列的判定及其通项公式在考查基本运算、基本概念的同时,也注重对函数与方程、等价转化、分类讨论等数学思想的考查;对等差数列、等比数列的性质考查主要是求解数列的等差中项、等比中项、通项公式和前n项和的最大、最小值等问题,主要是中低档题;等差数列、等比数列的前n项和是高考考查的重点。
年份卷别考查角度及命题位置201 7Ⅰ卷等差、等比数列的综合应用·T17201 5Ⅰ卷等差数列的通项公式及前n项和公式·T7等比数列的概念及前n项和公式·T13Ⅱ卷等差数列的通项公式、性质及前n项和公式·T5[真题自检]1.(2015·高考全国卷Ⅱ)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.5 B.7C.9 D.11解析:法一:∵a1+a5=2a3,∴a1+a3+a5=3a3=3,∴a3=1,∴S5=错误!=5a3=5.法二:∵a1+a3+a5=a1+(a1+2d)+(a1+4d)=3a1+6d=3,∴a1+2d =1,∴S5=5a1+错误!d=5(a1+2d)=5.解析:A2.(2015·高考全国卷Ⅰ)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=( )A。
错误!B。
错误!C.10 D.12解析:∵公差为1,∴S8=8a1+错误!×1=8a1+28,S4=4a1+6.∵S8=4S4,∴8a1+28=4(4a1+6),解得a1=错误!,∴a10=a1+9d=错误!+9=错误!。
答案:B3.(2015·高考全国卷Ⅰ改编)在数列{a n}中,a1=2,a n+1=2a n,S n 为{a n}的前n项和.若S n=126,求n的值.解析:∵a1=2,a n+1=2a n,∴数列{a n}是首项为2,公比为2的等比数列.又∵S n=126,∴错误!=126,∴n=6.等差数列、等比数列的基本运算[方法结论]1.两组求和公式(1)等差数列:S n=错误!=na1+错误!d;(2)等比数列:S n=错误!=错误!(q≠1).2.在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.[题组突破]1.(2017·贵阳模拟)等差数列{a n}的前n项和为S n,且a3+a9=16,则S 11=( )A .88B .48C .96D .176解析:依题意得S 11=11a 1+a 112=错误!=错误!=88,选A 。