位移法典型方程计算举例
- 格式:ppt
- 大小:1.28 MB
- 文档页数:50
第十七章位移法求解超静定结构的两种最基本的方法力法适用性广泛,解题灵活性较大。
(可选用各种各样的基本结构)。
位移法在解题上比较规范,具有通用性,因而计算机易于实现。
位移法可分为:手算——位移法电算——矩阵位移法力法位移法力法与位移法最基本的区别:基本未知量不同力法:以多余未知力基本未知量位移法:以某些结点位移基本未知量F PϕBϕB在忽略杆轴向变形和剪切变形的条件下,结点B 只发生角位移ϕB 。
由于结点B 是一刚结点,故汇交于结点B 的两杆的杆端在变形后将发生与结点相同的角位移。
位移法计算时就是以这样的结点角位移作为基本未知量的。
第一节位移法的基本概念BAClhEI 1EI 2首先,附加一个约束使结点B 不能转动,此时结构变为两个单跨超静定梁。
称为位移法的基本结构。
在荷载作用下,可用力法求得两根杆的弯矩图。
由于附加约束阻止结点B 的转动,故在附加约束上会产生一个约束力矩1631l F F P P -=C BAF P316Fl 532FlCAB然后,为了使变形符合原来的实际情况,必须转动附加约束以恢复ϕB 。
两个单跨超静梁在B 端有角位移时的弯矩图,同样可由力法求得。
此时在附加约束上产生约束力矩Bh EI lEI F ϕ⎪⎭⎫ ⎝⎛+=211143ϕB ϕBBA CB lEI ϕ13B h EI ϕ24B hEI ϕ22F PBAC求基本未知量,可分两步完成:1)在可动结点上附加约束,限制其位移,在荷载作用下,附加约束上产生附加约束力;2)转动附加约束使结点产生角位移ϕB ,使结构发生与原结构一致的结点位移。
ϕBϕB附加刚臂经过上述两个步骤,附加约束上产生约束力矩应为F 11和F 1P 之和。
由于结构无论是变形,还是受力都应与原结构保持一致,而原结构在B 处无附加约束,亦无约束力矩,故有F 11+F 1P =001634321=-⎪⎭⎫⎝⎛+Fl h EI lEI B ϕ解方程可得出ϕB 。
位移法典型方程将求出后ϕB ,代回图22-1c ,将所得的结果再与图22-1b 叠加,即得原结构(图22-1a )的解。
位移法的典型方程与力法的典型方程一样位移法和力法是结构分析中常用的两种方法。
位移法是通过求解结构的位移来得到结构的反力,而力法是通过已知的外力和支座反力来求解结构的内力和位移。
尽管这两种方法的思想和计算过程不同,但它们的本质是相同的,都是基于平衡原理和变形原理,因此它们的典型方程也具有相似性。
一、位移法的典型方程位移法是一种基于变形原理的方法,它假设结构的变形是已知的,通过求解结构的位移来得到结构的反力。
位移法的典型方程是:$$boldsymbol{K}boldsymbol{u}=boldsymbol{F}$$其中,$boldsymbol{K}$是结构的刚度矩阵,$boldsymbol{u}$是结构的位移向量,$boldsymbol{F}$是结构的外力向量。
在这个方程中,$boldsymbol{u}$是未知量,$boldsymbol{K}$和$boldsymbol{F}$是已知量。
因此,通过求解这个方程,可以得到结构的位移和反力。
二、力法的典型方程力法是一种基于平衡原理的方法,它假设结构的外力和支座反力是已知的,通过求解结构的内力和位移来满足平衡条件。
力法的典型方程是:$$boldsymbol{K}boldsymbol{x}=boldsymbol{P}$$其中,$boldsymbol{K}$是结构的刚度矩阵,$boldsymbol{x}$是结构的位移向量,$boldsymbol{P}$是结构的等效节点力向量。
在这个方程中,$boldsymbol{x}$是未知量,$boldsymbol{K}$和$boldsymbol{P}$是已知量。
因此,通过求解这个方程,可以得到结构的内力和位移。
三、位移法和力法的相似性位移法和力法的本质是相同的,它们都是基于平衡原理和变形原理的。
因此,它们的典型方程也具有相似性。
首先,它们的典型方程都是线性方程组。
在位移法和力法中,结构的刚度矩阵和等效节点力向量都是已知的,未知量是结构的位移和反力(力法中是内力和位移)。
位移法典型方程根据(实用版)目录1.位移法的基本概念2.位移法的典型方程3.位移法的应用实例4.位移法的优缺点分析正文一、位移法的基本概念位移法是一种求解固体力学问题的数值方法,主要通过计算物体在受力作用下的位移来研究其内部应力和应变分布。
位移法基于弹性力学的基本原理,适用于求解各种复杂的固体力学问题,如梁、板、壳等结构在受力作用下的变形和内部应力分布。
二、位移法的典型方程位移法的典型方程是根据弹性力学原理推导得到的。
以一维简支梁为例,当梁受到均布荷载作用时,其位移法的典型方程为:挠度公式:f(x) = q(x-x0)/8EI弯矩公式:M(x) = EI*(f"(x)-qx)/2其中,f(x) 表示梁在 x 处的挠度,M(x) 表示梁在 x 处的弯矩,E 为材料的弹性模量,I 为梁的惯性矩,q 为均布荷载,x0 为梁的支点,f"(x) 为挠度的一阶导数。
三、位移法的应用实例位移法广泛应用于各种固体力学问题的求解,如梁、板、壳等结构在受力作用下的变形和内部应力分布。
例如,在求解简支梁在均布荷载作用下的挠度和弯矩时,可以采用位移法进行计算。
四、位移法的优缺点分析1.优点:位移法求解固体力学问题时,可以通过计算物体的位移来直接得到其内部应力和应变分布,避免了传统力学方法中的繁琐计算过程。
此外,位移法适用于各种复杂的固体力学问题,具有较强的通用性。
2.缺点:位移法的求解过程涉及到较高阶的微分方程,计算过程较为复杂。
在某些特殊情况下,位移法的求解结果可能不如其他方法准确。
总之,位移法作为一种求解固体力学问题的数值方法,具有广泛的应用前景。