例1求载流长直导线的磁场已知
- 格式:pptx
- 大小:617.62 KB
- 文档页数:30
房改房大锅饭大公国静电场中的导体:例题1如图,半径为的接地导体球附近有一个静止点电荷,它与球心相距为,求导体球表面上感应电荷。
解:点电荷在球心处的电势为设为球面上感应面电荷密度,在球面上各点不尽相同(注意:对一个孤立的带电球形导体而言,其电荷是均匀分布在球面上的,即面电荷密度处处相同。
而今,导体球处于点电荷的电场中,对球面上各点的感应电荷分布是不均匀的。
)为此,可先在球面上任取一面积元,其上的感应电荷为,它在球心点的电势为整个球面上的感应电荷在球心点的电势为显然,,上式成为而球心点的电势为与之代数和,且其和应等于零,即由此可得,导体球表面上的感应电荷q′为按题意,导体球接地,以地的电势为零,考虑到位于点电荷q的静电场中的导体是一个等势体,这样,球心的电势亦应为零;而球心的电势则等于点电荷q和球面上的感应电荷q′所激发的电场在点O的电势之代数和。
据此即可求出解。
2.如图,三块平行的金属板A、B和C,面积均为。
板A、B相距,板A、C相距,B、C 两板都接地。
如果使A板带正电,并略去边缘效应,问B板和C板的内、外表面上感应电荷各是多少? 以地的电势为零,问A板的电势为多大解: 按题意,可判断感应电荷的分布如图所示。
因为B、C两板接地,所以两板都带负电,且即(a)考虑到 , , , , 则(b)由式(a)、(b),可得或这里,, , 代入上式,便可算出两板内表面感应电荷分别为,由于 B、C 板接地,外表面感应电荷为零。
又由 , 且,带入上述数值可算得 A 板的电势为。
有介質的靜電場:例题1.在无限长电缆内,导体圆柱A和同轴导体圆柱壳B的半径分别为和(<),单位长度所带电荷分别为+λ和-λ,内、外导体之间充满电容率为的均匀电介质。
求电介质中任一点的场强及内、外导体间的电势差。
解:取高斯面,它是半径为(<<)、长度为的同轴圆柱形闭合面。
左、右两底面与电位移的方向平行,其外法线方向皆与成夹角θ=π/2,故电位移通量为0;柱侧面与的方向垂直,其外法线与同方向,θ=0°通过侧面的电位移通量为cos0°(2π)。
同 学 们 好§11-2历史之旅:毕奥-萨伐尔定律1820 年4月: 丹麦物理学家奥斯特(1777~1851)发 现电流的磁效应。
“猛然打开了科学中一个黑暗领域的大门。
” ——法拉第历史之旅:1820 年8月: 法国物理学家阿拉果在瑞士得到消息,并于9月向 法国科学院介绍了奥斯特实验,引起极大反响。
1820年10月: 法国物理学家毕奥和沙伐尔发表《运动的电传递给金属 的磁化力》,提出直线电流对磁针作用的实验规律。
法国数学、物理学家拉普拉斯由实验规律推出载流线段 元(电流元)磁场公式。
毕奥和沙伐尔用实验验证了该 公式。
一 毕奥—萨伐尔定律 (电流元在空间产生的磁场)v Idlv dBv 电流元:IdlI d l sin α dB ∝ k 2 rv dBP *v rαv IdlIdB =µ0 Idl sin α4π r2−7v r−2真空磁导率 µ0 = 4π ×10 N ⋅ A方向v Idlv dBv v v µ0 Idl × r dB = 3 4π rv dBP *v rαv IdlIv r任意载流导线在点 P 处的磁感应强度 磁感强度叠加原理v v v v µ 0 I dl × r B = ∫ dB = ∫ 3 4π r试比较点电荷电场公式与电流元毕奥—萨伐尔定律r dE =1 dq v ⋅ 3 r 4 πε0 rr v r µ0 I d l × r ⋅ dB = 4π r3毕—萨定律:电流元产生磁场的规律, 与点电荷电场公式作用地位等价。
二 毕奥—萨伐尔定律的应用 求解电流磁场分布基本思路: 将电流视为 电流元的集合 电流元磁场公式 磁场叠加原理电流磁场分布1.载流长直导线的磁场 已知: I , a , α1 , α2 求:r B 分布r 解:取电流元 I d lµ 0 I d l sin α dB = 4π r 2lBIα2; 方向 ⊗r 各电流元在 P 点 d B同向µ 0 Idl sin α B = ∫ dB = ∫ 4πr 2 ABor I dlaαr rr dB ⊗P统一变量:l = − actgα a dα dl = sin 2α a r= sinαα1Aµ0I α B= ∫α sin α d α 4π a µ0I = (cos α 1 − cos α 2 ) 4π a2 1方向⊗µ0I B= (cos α 1 − cos α 2 ) 4π a方向 ⊗µ0I (cos α 1 − cos α 2 ) B= 讨论: 4π a α1 = 0 , α 2 = π (1)无限长直电流:Iµ0I B = 2π aIr B内密外疏(2)导线半无限长,场点与一端的连线垂 直于导线 µ0IB = 4π a(3)直导线及其延长线上点 r α = 0 或 π , dB = 0r B=02.载流圆线圈轴线上的磁场(I,R)r Id lRr rθr dBPr 解:在圆电流上取电流元 IdlxIoµ 0 I d l sin 90 o µ Id l dB = = 0 2 4π r 2 4π r方向如图各电流元在 P 点r IdlRr dB大小相等,方向不同,由对称性:zr dBr rθr dBPB⊥ = ∫ dB⊥ = 0yIoxr' dBPr Idl ′r IdlRr rθr dBPB = B// = ∫ dB sin θ =x2πR∫0µ0 Idl R 4πr 2 r23 2Ior' Id lr' dBµ0 IR = 4πr 32πR∫ dl = 2( R0µ 0 IR 22+x )方向 :+ x (右螺旋法则)轴线上r B=µ 0 IR 22( R 2 + x 2 )3 2r i讨论: (1) 定义电流的磁矩v v m = IS e nr Pmr nS : 电流所包围的面积规定正法线方向: 圆电流磁矩:r n与 I 指向成右旋关系v 2v m = Iπ R enSI圆电流轴线上磁场:r B=µ 0 IR 22( R + x )2 23 2r i =µ0 m2π ( R + x )2 23 2vr B=µ 0 IR 22( R + x )2 23 2r i =µ0 m2π ( R + x )2 23 2v(2)圆心处磁场x=0Nµ0 I B0 = ; N匝 : B0 = 2R 2R(3)在远离线圈处µ0 Ix >> R, x ≈ rµ 0 IS µ 0 IS B = = 3 2π x 2π r 3 v r µ0 m B = 3 2π r(4)画 B− x曲线 2 r r µ0 IR B= 3 i 2 2 2( R + x ) 2 练习:BoBo = ?xIRoR o⊗IB0 =µ0 I8R3µ 0 I µ 0 I B0 = + 8R 4π R⋅(1) I (2 )v R B x 0 µ0I o B0 = 2RI R o+(4)BA =d (5) I *AR1µ0 I4π dB0 =µ0 I4RR2(3) I R o*oB0 =µ0 I8RB0 =µ0 I4 R2−µ0 I4 R1−µ0 I4π R1亥姆霍兹圈:两个完全相同的N匝共轴密绕短线圈,其 中心间距与线圈半径R相等,通同向平行等大电流 I。