半无限长载流直导线的磁场
- 格式:ppt
- 大小:2.28 MB
- 文档页数:39
第六章 稳恒磁场思考题6-1 为什么不能把磁场作用于运动电荷的力的方向,定义为磁感强度的方向?答:对于给定的电流分布来说,它所激发的磁场分布是一定的,场中任一点的B 有确定的方向和确定的大小,与该点有无运动电荷通过无关。
而运动电荷在给定的磁场中某点 P 所受的磁力F ,无论就大小或方向而言,都与运动电荷有关。
当电荷以速度v 沿不同方向通过P 点时,v 的大小一般不等,方向一般说也要改变。
可见,如果用v 的方向来定义B 的方向,则B 的方向不确定,所以我们不能把作用于运动电荷的磁力方向定义为磁感应强度B 的方向。
6-2 从毕奥-萨伐尔定律能导出无限长直电流的磁场公式aIB πμ2=。
当考察点无限接近导线(0→a )时,则∞→B ,这是没有物理意义的,如何解释?答:毕奥-萨伐尔定律是关于部分电流(电流元)产生部分电场(dB )的公式,在考察点无限接近导线(0→a )时,电流元的假设不再成立了,所以也不能应用由毕奥-萨伐尔定律推导得到的无限长直电流的磁场公式aIB πμ2=。
6-3 试比较点电荷的电场强度公式与毕奥-萨伐尔定律的类似与差别。
根据这两个公式加上场叠加原理就能解决任意的静电场和磁场的空间分布。
从这里,你能否体会到物理学中解决某些问题的基本思想与方法?答:库仑场强公式0204dqr dE rπε=,毕奥一萨伐定律0024Idl r dB r μπ⨯= 类似之处:(1)都是元场源产生场的公式。
一个是电荷元(或点电荷)的场强公式,一个是电流元的磁感应强度的公式。
(2)dE 和dB 大小都是与场源到场点的距离平方成反比。
(3)都是计算E 和B 的基本公式,与场强叠加原理联合使用,原则上可以求解任意分布的电荷的静电场与任意形状的稳恒电流的磁场。
不同之处: (1)库仑场强公式是直接从实验总结出来的。
毕奥一萨伐尔定律是从概括闭合电流磁场的实验数据间接得到的。
(2)电荷元的电场强度dE 的方向与r 方向一致或相反,而电流元的磁感应强度dB 的方向既不是Idl 方向,也不是r 的方向,而是垂直于dl 与r 组成的平面,由右手螺旋法则确定。
《大学物理A Ⅰ》恒定磁场习题、答案及解法一.选择题。
1.边长为a 的一个导体边框上通有电流I ,则此边框中心的磁感应强度【C 】 (A )正比于2a ; (B )与a 成正比; (C )与a 成反比 ; (D )与2I 有关。
参考答案:()210cos cos 4ββπμ-=a IB a I a I B πμπππμ002243cos 4cos 244=⎪⎭⎫ ⎝⎛-⨯=2.一弯成直角的载流导线在同一平面内,形状如图1所示,O 到两边无限长导线的距离均为a ,则O 点磁感线强度的大小【B 】(A) 0 (B)aI π2u )221(0+(C )a I u π20 (D )aIu o π42参考答案:()210cos cos 4ββπμ-=aIB ⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=2212cos 4cos 443cos 0cos 400021a I a I a I B B B πμπππμππμ3.在磁感应强度为B的均匀磁场中,沿半径为R 的圆周做一如图2所示的任意曲面S ,则通过曲面S 的磁通量为(已知圆面的法线n与B 成α角)【D 】(A )B 2r π (B )θπcos r 2BI(C )θπsin r -2B (D )θπcos r 2B -参考答案:⎰-=•=ΦSM B r S d B απcos 24.两根长直导线通有电流I ,如图3所示,有3个回路,则【D 】(A )IB 0a l d μ-=•⎰(B)I B 0b 2l d μ=•⎰(C) 0l d =•⎰ c B (D) IB C 02l d μ=•⎰参考答案: ⎰∑==•Ln i i I l d B 10μ5.在磁场空间分别取两个闭合回路,若两个回路各自包围载流导线的条数不同,但电流的代数和相同,则由安培环路定理可知【B 】(A)B沿闭合回路的线积分相同,回路上各点的磁场分布相同 (B)B沿闭合回路的线积分相同,回路上各点的磁场分布不同 (C)B沿闭合回路的线积分相同,回路上各点的磁场分布相同 (D)B沿闭合回路的线积分不同,回路上各点的磁场分布不同参考答案:6.恒定磁场中有一载流圆线圈,若线圈的半径增大一倍,且其中电流减小为原来的一半,磁场强度变为原来的2倍,则该线圈所受的最大磁力矩与原来线圈的最大磁力矩之比为【 C 】(A)1:1 (B)2:1 (C)4:1 (D)8:1参考答案: S I m= B m M ⨯=()()142420000000000max max =⎪⎭⎫⎝⎛==B S I B S I B S I ISB M M7.质量为m 的电子以速度v垂直射入磁感应强度大小为B 的均匀磁场中,则该电子的轨道磁矩为【A 】(A)B mv 22 (B)B v m π222 (C)π222v m (A)Bm ππ22参考答案: R v m evB 2= eBmvR = R ev R v e I ππ22== Bmv eB mv ev R ev R R ev IS m 222222=====ππ 8.下列对稳定磁场的描述正确的是【B 】(A) 由I B L∑=•⎰0l d μ可知稳定磁场是个无源场(B )由0S d =•⎰LB 可知磁场为无源场 (C )由I B L ∑=•⎰0l d μ可知稳定磁场是有源场 (D )由0S d =•⎰L B 可知稳定磁场为有源场参考答案: ⎰=•SS d B 0磁场是一个无源场⎰∑==•Ln i i I l d H 1磁场是一个有旋场9.一运动电荷Q ,质量为m ,垂直进入一匀强磁场中,则【C 】 (A )其动能改变,动量不变; (B )其动能和动量都改变; (C )其动能不变,动量改变; (D )其动能、动量都不变.参考答案:洛沦兹力提供向心力,该力不做功。
07《大学物理学》第五六章恒定磁场自学练习题(共11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第五章 恒定磁场部分 自学练习题要掌握的典型习题: 1.载流直导线的磁场:已知:真空中I 、1α、2α、x建立坐标系Oxy ,任取电流元I dl ,这里,dl dy =P 点磁感应强度大小:02sin 4Idy dB r μαπ=;方向:垂直纸面向里⊗。
统一积分变量:cot()cot y x x παα=-=-;有:2csc dy x d αα=;sin()r x πα=-。
则: 2022sin sin 4sin x d B I x μαααπα=⎰210sin 4I d x ααμααπ=⎰012(cos cos )4I xμααπ-=。
①无限长载流直导线:παα==210,,02IB xμπ=;(也可用安培环路定理直接求出)②半无限长载流直导线:παπα==212,,04IB xμπ=。
2.圆型电流轴线上的磁场:已知:R 、I ,求轴线上P 点的磁感应强度。
建立坐标系Oxy :任取电流元Idl ,P 204rIdldB πμ=;方向如图。
分析对称性、写出分量式:0B dB ⊥⊥==⎰;⎰⎰==20sin 4r Idl dB B x x απμ。
统一积分变量:r R =αsin∴⎰⎰==20sin 4r Idl dB B x x απμ⎰=dl r IR 304πμR r IR ππμ2430⋅=232220)(2x R IR +=μ。
结论:大小为2022322032()24I R rIR B R x μμππ⋅⋅==+;方向满足右手螺旋法则。
①当x R >>时,220033224IRI R B x xμμππ==⋅⋅; ②当0x =时,(即电流环环心处的磁感应强度):00224IIB RRμμππ==⋅; B⊗RI dlIdlr αOB d RrB③对于载流圆弧,若圆心角为θ,则圆弧圆心处的磁感应强度为:04IRB μθπ=。
图7-10707 恒定磁场(1)班号 学号 姓名 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1.通有电流I 的无限长导线abcd ,弯成如图7-1所示的形状。
其中半圆段的半径为R ,直线段ba 和cd 均延伸到无限远。
则圆心O 点处的磁感强度B 的大小为:A .R I RIπμμ4400+; B .RIR I πμμ2400+; C .RI R Iπμμ4200+; D .R Iπμ0。
(A )[知识点] 载流导线磁场的公式,磁场B 的叠加原理。
[分析与解答] 无限长载流直导线ab 在其延长线上任一点产生的磁场有 01=B半径为R 的半圆形截流导线bc 在圆心处产生的磁场为 αR I μB π402=RIμR I μ4ππ400==,方向为⊗ 半无限长截流直导线cd 在距其一端点R 处产生的磁场为 RIμB π403=,方向为⊗ O 点的磁场可以看成由三段载流导线的磁场叠加而得,即 3210B B B B ++= 由于方向一致,则RIμR I μB B B B π44003210+=++=,方向为⊗。
2. 如图7-2所示,载流圆形线圈(半径a 1)与正方形线圈(边长a 2)通有相同的电流I 。
若两个线圈的中心O 1、O 2处的磁感强度大小相等,则半径a 1与边长a 2的比值21:a a 为:图7-2图7-3A .1:1; B. 1:2π;C.4:2π; D.8:2π。
(D )[知识点] 载流导线的磁场公式,磁场叠加原理。
[分析与解答] 圆形线圈中心的磁场为1012a IμB =正方形线圈中心的磁场为()[]202022245sin 45sin 244a Iμa I μB π=︒--︒⨯π= 由题意知 21B B = 即2010222a Iμa I μπ= 则8221π=a a3.如图7-3所示,两个半径为R 的相同金属圆环,相互垂直放置,圆心重合于O 点,并在a 、b 两点相接触。