风轮轮毂与变桨距系统
- 格式:pdf
- 大小:774.54 KB
- 文档页数:38
风力发电机组变桨距控制系统的研究风力发电机组变桨距控制系统的研究近年来,随着环境问题的加剧和清洁能源的重要性逐渐凸显,风力发电作为一种潜在的可再生能源广泛应用。
风力发电机组是将风能转化为电能的关键设备,而变桨距控制系统则是提高风力发电效率的重要技术手段之一。
本文将对风力发电机组变桨距控制系统的研究进行探讨,从控制系统的结构、控制策略以及实际运行效果等方面进行分析。
1. 控制系统的结构风力发电机组的变桨距控制系统主要由传感器、执行器、控制器和信号传输部分组成。
传感器用于感知风力、转速以及叶片位置等信息,将这些信息传递给控制器。
控制器根据传感器获取的信息,通过控制策略对执行器发出信号,调节叶片角度,从而实现对风力发电机组的变桨距控制。
2. 控制策略目前,常用的控制策略主要有定角度控制和最大功率控制两种。
定角度控制是通过固定叶片角度来控制风力发电机组的输出功率,通常适用于恒定风速下的风机运行。
而最大功率控制则是根据风速大小实时调整叶片角度,以实现风力发电机组在不同风速下的最佳输出功率。
最大功率控制策略可以提高风力发电机组的效率,适应不同风速环境,并降低对外部条件的敏感性。
3. 实际运行效果根据实际应用情况和研究成果分析,风力发电机组的变桨距控制系统在提高发电效率、保护设备安全方面取得了显著效果。
通过使用最大功率控制策略,风力发电机组可以根据风速变化实时调整叶片角度,充分利用风能,并在恶劣天气条件下及时响应,减轻设备负荷。
同时,变桨距控制系统的应用也大大降低了由于风电机组运行时桨叶受损引起的事故风险,增加了设备的可靠性和安全性。
4. 研究展望尽管风力发电机组变桨距控制系统已取得一定的研究进展,但仍存在一些挑战和待解决的问题。
首先,尽管最大功率控制策略可以提高发电效率,但在不同风速区间的切换问题仍需要进一步优化。
其次,传感器的稳定性和可靠性也是需要关注的焦点,特别是在恶劣环境下的应用。
另外,随着风力发电技术的发展,新型的控制策略和技术工具也需要不断研发和应用,以进一步提高风力发电机组的性能和可靠性。
风电机组轮毂及变桨系统规程1 简介轮毂与变桨系统的作用就是将风能转换成旋转的机械能,并依据风速大小实现三个叶片独立变桨,确保风力发电机组在宽广的风速范围内都具有较高的风能利用率。
变桨系统的中控箱和轴控箱对变桨电机进行联合控制,使风轮转速保证届时风速下的最大功率输出;当风速超过额定风速时,变桨系统调整叶片角度,使风轮转速恒定在一个数值上,这样就减少了转速变化对风机零部件及电网的冲击。
除控制功率输出,变桨系统还是风机最重要的主制动系统。
三个叶片都可独立变桨并带有备用电池电源。
理论上三个叶片中的一个转动到顺桨位置,就可以实现制动,与高速轴制动器共同作用可以安全地使风机停转。
中央控制箱负责协调三个变桨驱动箱同步工作,并使用控制电缆、通讯电缆通过滑环与机舱控制柜进行动力和通讯传输。
2 构成示意图3 注意事项首次维护应在风机动态调试完毕且正常运行7——10天后进行;以后每6个月进行一次。
轮毂与变桨系统的维护和检修工作,必须由明阳风电公司技术人员或接受过明阳风电公司培训并得到认可的人员完成。
在进行维护和检修工作时,必须严格执行《轮毂与变桨系统检修卡》上的每项内容,认真填写检修记录。
在进行维护和检修前必须:阅读《MY1.5s安全手册》,所有操作必须严格遵守《MY1.5s安全手册》。
如果环境温度低于-20 ℃,不得进行维护和检修工作。
如果超过下述的任何一个限定,必须立即停止工作:a) 叶片位于工作位置和顺桨位置之间的任何位置5-分钟平均值(平均风速) >10 m/s5-秒平均值 (阵风速度) >19 m/sb) 叶片顺桨,主轴锁定装置已经启动并已可靠锁定风轮:5-分钟平均值(平均风速) >18 m/s5-秒平均值 (阵风速度) >27 m/s重要提示:对风轮进行任何维护和检修,必须首先使风机停转,高速轴制动器处于制动状态并用主轴锁定装置锁定风轮后方可进入轮毂内部。
如特殊情况,需在风机处于工作状态或变桨机构处于转动状态下进行维护和检修时(如检查齿轮副啮合、电机噪音、振动等状态时),必须确保有人守在紧急开关旁,可随时按下开关,使系统停机。
2023-11-09contents •风力发电机组概述•变桨矩系统概述•变桨矩系统的主要部件•变桨矩系统的控制策略•变桨矩系统的优化与改进建议•变桨矩系统的应用与发展趋势目录01风力发电机组概述风力发电机组是一种将风能转化为电能的系统,由风轮、发电机、塔筒等主要部件组成。
定义具有可再生、清洁、无污染等特点,是绿色能源领域的重要组成部分。
特点风力发电机组的定义与特点风轮叶片在风的驱动下旋转,将风能转化为机械能。
风的捕获机械能的转化电能的输出风轮通过主轴将机械能传递到齿轮箱,再由齿轮箱将机械能转化为电能。
发电机将机械能转化为电能,通过电缆输送到电网。
03风力发电机组的工作原理0201分类根据风力发电机组容量、功率等级、转速等因素,可以分为恒速型、变速型等不同类型。
组成风力发电机组主要由风轮、发电机、塔筒、齿轮箱、控制系统等组成。
风力发电机组的分类与组成02变桨矩系统概述变桨矩系统定义变桨矩系统是一种用于控制风力发电机组功率输出的装置,它可以根据风速和发电机组运行状态,改变桨叶的桨距角,从而控制风能捕获量。
变桨矩系统特点变桨矩系统具有高精度、高可靠性、高效能等特点,它能够实现快速响应、平稳控制,确保风力发电机组在复杂风况下的稳定运行。
变桨矩系统的定义与特点变桨矩系统的作用与重要性变桨矩系统的作用变桨矩系统的主要作用是调节发电机组的功率输出,以适应不同的风速和负荷条件。
它可以通过改变桨叶的桨距角,控制风能捕获量,从而降低载荷、提高发电效率。
变桨矩系统的重要性由于风力发电机组面临的风况复杂多变,因此变桨矩系统的应用对于确保发电机组的稳定运行至关重要。
它不仅可以提高风能利用率,降低载荷,还可以延长发电机组的使用寿命。
变桨矩系统的组成变桨矩系统通常由变桨电机、减速箱、轴承、传感器等组成。
其中,变桨电机是驱动桨叶变桨的核心部件,减速箱用于将电机的转速降低到适合桨叶旋转的速度,轴承用于支撑桨叶并确保其灵活旋转,传感器则用于监测变桨系统的运行状态。
2023-11-10CATALOGUE 目录•风力发电机组简介•变桨距控制策略的基本理论•变桨距控制策略的实现方法•变桨距控制策略的优化方法•变桨距控制策略在实际中的应用及案例分析01风力发电机组简介风力发电机组的基本构造风力发电机组的核心部件,由叶片和轮毂组成,用于捕捉风能并将其转化为机械能。
风轮齿轮箱发电机塔筒连接风轮和发电机的重要部件,将风轮的转速提升到发电机所需的速度。
将机械能转化为电能的重要部件,由定子和转子组成。
支撑风轮和发电机的高耸结构,通常由钢铁或混凝土制成。
风力发电机组通过旋转的风轮捕捉风的动能,并将其转化为机械能。
风的捕捉机械能的转化电能的产生机械能通过齿轮箱的传递,将转速提升到发电机所需的速度。
发电机将机械能转化为电能,通过电缆输送到电网。
03风力发电机组的运行原理0201按风向分类水平轴风力发电机组和垂直轴风力发电机组。
水平轴风力发电机组的风轮轴与地面平行,而垂直轴风力发电机组的风轮轴与地面垂直。
风力发电机组的分类按容量分类小型、中型和大型风力发电机组。
小型风力发电机组的功率通常在几百瓦到几千瓦之间,中型风力发电机组的功率在几兆瓦到几十兆瓦之间,而大型风力发电机组的功率通常在几百兆瓦到几兆瓦之间。
按运行原理分类恒速风力发电机组和变速风力发电机组。
恒速风力发电机组的风轮转速保持不变,而变速风力发电机组的风轮转速可以根据风速进行调整。
02变桨距控制策略的基本理论变桨距控制是一种用于调节风力发电机组功率输出的技术,通过改变桨叶的桨距角实现对风能捕获的优化控制。
在风速较高时,通过减小桨距角增加风能捕获,以提升发电机组的功率输出;在风速较低时,通过增大桨距角减小风能捕获,以避免过度捕获风能导致发电机组振动和疲劳损坏。
变桨距控制的概念和意义变桨距控制系统的基本结构变桨距控制系统主要由传感器、控制器和执行器组成。
传感器负责监测风速、风向和发电机组运行状态;控制器根据传感器信号和预设的控制逻辑对执行器进行指令输出;执行器根据指令调整桨叶的桨距角。
涨知识风力机的独立变桨距系统在风力机调速方式课件中介绍了变桨距调节转速的原理,还介绍了一种简单的离心力桨距调节装置。
现代大中型风力发电机组对叶片的变桨距性能有很高要求,以保证风力机能以最高效率安全的运行,主要有独立变桨距系统与统一变桨距机构。
本课件介绍独立变桨距系统。
变桨距系统要保证风轮叶片在起动状态、正常运行状态、停机顺桨状态能有良好的变桨距角功能,也就是:起动状态:风力机在静止时,桨距角为90度(全顺风);当风速达到起动风速时,叶片转向45度左右,以获得较大的起动转矩;当风轮转速达到一定速度时,再调节叶片转到0度。
运行状态:在正常运行时,当功率在额定功率以下时,桨距角在0度附近;当功率超过额定功率时,根据计算机命令增大叶片的攻角,并不断调整桨距角使发电机的输出功率保持在额定功率附近,桨距角变化范围在0度到30度之间。
停机顺桨状态:当风机正常停机和快速停机时将叶片顺桨到90度附近,利用叶片的气动阻力将风轮转速降为0。
当停电或出现故障时无需计算机命令能自动进入全顺桨状态,使风力机紧急停机,确保风力发电机组的安全。
本课件介绍的变桨距系统的三组叶片的桨距角变化是受各自的驱动装置控制,同一台风力机的各个叶片可根据不同的控制作出不同的桨距角变化,这种变桨系统称为独立变桨系统,有很好的控制性能。
主要有液压驱动与电动驱动方式。
液压变桨距系统先介绍液压变桨距系统,在风轮的三叉形轮毂上有三个变桨轴承法兰,将与变桨轴承的外圈固定安装,在图1中的三叉形轮毂是剖开的,在两个法兰上已经固定好两个变桨轴承,在其中一个变桨轴承内圈固定着叶片根盘,叶片根部与叶片根盘固定连接,叶片通过变桨轴承可自由转动。
图中有一个液压缸,液压缸内有可伸出的活塞杆(液压杆),活塞杆输出端通过液压杆轴承与叶片根盘上的变桨摇柄连接,活塞杆的伸缩推动叶片根盘转动。
由于变桨摇柄是圆弧运动,液压缸也会随之摆动,所以液压缸是通过一根摆动轴安装在轮毂上的。
图1--液压变桨距系统的液压缸图2是液压缸的活塞杆部分推出时的状态,叶片转动了一定的角度。
风机变桨系统轮毂与变桨系统的作用是将叶片旋转产生的机械能传递给传动系统,并根据风速大小可以实现三个桨叶独立变桨,确保风机可以在很广风速范围内有很高的风能利用率,风速小于额定风速时,叶片处于0°,风能利用率最高,风速大于额定风速时,叶轮变桨,保持额定转速。
主要组成零部件有:轮毂、变桨轴承、变桨齿轮箱、叶片锁定装置、指针、撞块以及变桨控制系统等。
轮毂是风力发电机组的重要零件之一,用来安装变桨轴承、变桨控制系统,连接叶轮并传递机械能。
轮毂系统里机械零部件要做好表面防腐维护工作,避免因生锈腐蚀使零件失效。
轮毂系统里面的连接螺栓要按照要求预紧,以避免轮毂运行时螺栓和零部件掉落。
变桨轴承内圈安装连接叶片,通过变桨控制系统驱动变桨轴承内圈转动,使叶片变桨。
其外圈固定在轮毂上不动,外圈上面有油嘴,集中润滑系统通过油管将油脂注入轴承滚道。
指针安装在变桨轴承外圈上,指向轮毂缺口位置,此缺口为变桨角度的零位标志。
撞块安装在变桨轴承内圈上,有两个限位开关,第一个是91°限位,第二个是100°限位。
当叶片正常顺桨是91°,刚好撞到第一个限位点,为了防止第一个失效,我们增加了第二个限位点,提高系统的安全性。
叶片锁定装置用来固定变桨轴承内圈的手动机械锁紧装置,从而使得叶片相对轮毂固定不动。
变桨减速器是将变桨电机高速转动变成低速转动传递给变桨轴承,实现叶片变桨。
变桨控制系统安装在轮毂内,MY1.5MW系列风机能实现三个叶片独自的变桨动作。
变桨控制系统有备用锂电池,以确保当电网掉电或控制单元故障时变桨系统的正常运作。
中央控制箱和轴控箱对变桨电机进行联合控制。
当风速变化,变桨控制系统调节叶片角度,使风轮转速恒定在一个数值上,这样减少了转速变化对风机零部件及电网的冲击。
除控制功率输出,变桨系统还是风机最重要的制动系统。