循环水系统运行方式优化
- 格式:doc
- 大小:24.50 KB
- 文档页数:5
谈火电厂循环水系统节能降耗对策摘要:随着我国节能减排的号召不断的深入,使得在现阶段的火力发电厂内也要对现有的设备进行节能降耗的工作。
对于在火电厂循环水系统来说,是火力发电的重要设备之一,只有保证此设备的正常运行,才能使火电厂获得更多的经济效益。
但值得注意的是,火电厂的循环水系统在运行期间也会消耗大量的能量,特别是对于一些老旧的循环水系统,运行所需要的能量也是较高的,所以就需要对现有的循环水系统进行节能降耗的工作,建设火力发电厂对能源消耗的程度,实现更多的社会价值。
关键词:火电厂循环水系统节能降耗对策前言:社会在不断的发展着,但是对于发展过程中的环境保护与资源的合理使用,却是一直别人们所忽视的,随着我国对于生态环境的建设与是可持续发展战略的提出,现阶段很多的火力发电厂都在采取各种方法对设备进行节能降耗的工作。
节能降耗严格意义上来说,并不是通过行政手段与相关法律去强制要求火电厂展开节能降耗的,而是随着社会的发展,节能降耗是企业必须要经过的一个路程。
在火电厂的经营中,循环水系统能够有效的降低设备所发出的温度,提高安全生产的能力;但是在运行过程中所消耗的能量与排放也是非常大的,因此在节能减排的号召下,必须对现有的循环水系统进行节能降耗的工作,使得火电厂能够在新时期里得到更好的发展,实现火电厂的可持续发展[1]。
1.火电厂循环水系统组成及存在的问题分析循环水系统对于不同的火电厂来说,在设计上都会存在这一定的差异,而大范围对循环水系统的组成进行观察,其中就包括由汽轮机低压缸的末级组、凝汽器、循环供水系统、凉水塔等部分共同组成。
具体的工作原理分为以下几个方面:(1)首先蒸汽在汽轮机内进行做功,做功结束这些蒸汽进入到凝气器室里面。
(2)循环水泵将冷却水水通过升压,送到凝汽器水室中,对凝汽器内的蒸汽进行冷却,完成热交换,使之重新形成冷凝水。
(3)汽轮机排汽,凝汽器中的汽冷凝为水,再通过凝结水泵做功,将冷凝之后的水进行加热做功循环利用;通过以上的步骤,循环水系统就可以正常的运行。
汽轮机冷端系统的运行优化发布时间:2021-11-23T03:50:22.930Z 来源:《中国电力企业管理》2021年8月作者:艾小琴[导读] 本文从机组启停、不同负荷、不同温升等工况下循环水泵优化运行方式降低循泵电耗,以及对汽轮机各冷端设备的维护保养降低机组热耗;同时提出一机双塔等技改建议,以提高机组经济性。
单位:国能达州发电有限公司姓名:艾小琴摘要本文从机组启停、不同负荷、不同温升等工况下循环水泵优化运行方式降低循泵电耗,以及对汽轮机各冷端设备的维护保养降低机组热耗;同时提出一机双塔等技改建议,以提高机组经济性。
关键词:冷端系统优化运行建议四川电网“水火不容”,且区域供电“供大于求”的格局2-3年内不会改变,火电机组低利用小时数还将延续。
2021年四川电力市场部分负荷继续采用竞价上网模式,竞争非常激烈,火电机组深度调峰(目前执行上网50%),机组启停频繁,2021年全球能源紧缺,煤炭成本上涨一倍,火电生存面临巨大挑战。
节能降耗是生存之本。
冷端系统是火电厂发电机组重要的辅助系统,它的工作状态和运行特性对整个电站机组的稳定性、安全性和经济性都有较大的影响。
结合实际运行状况,给出了机组启停、不同负荷、不同温升等工况下循环水泵优化运行方式降低循泵电耗;同时进行冷端系统的维护保养,提出一机双塔的技改建议,提高机组经济性。
一、概述某公司两台汽轮机组均为东方汽轮机股份有限公司生产N300-16.67/537/537-8型(高中压合缸)亚临界、一次中间再热、两缸、双排汽、凝汽式汽轮机,给水回热系统配置有3个高压加热器、4个低压加热器和1个除氧器。
每台机组配用一座5500m2双曲线逆流式自然通风冷却塔。
冷却塔进水采用钢筋混凝土结构方形压力沟与钢筋混凝土结构方形中央竖井,塔内装设淋水填料、喷溅装置和除雾器。
每台机组配备一台N-18250-3型表面式凝汽器。
每台机组配备两台型号为1600HLBK-23.9型的循环水泵。
工业冷却循环水系统的节能优化改进全文共四篇示例,供读者参考第一篇示例:工业冷却循环水系统的节能优化改进随着工业化进程的加快,工业生产对水资源的需求越来越大,其中冷却循环水系统作为工业生产中重要的一环,节能优化改进显得尤为重要。
冷却循环水系统在工业生产过程中起着冷却、传热、传质、保护设备和环境的作用,广泛应用于电力、冶金、化工、石油、制药、食品等行业。
传统的冷却循环水系统存在能耗高、水资源浪费、设备运行不稳定等问题,急需进行节能优化改进。
一、传统冷却循环水系统存在的问题1. 能耗高:传统的冷却循环水系统通常采用机械式冷却塔或者冷却器进行循环冷却,这些设备需要耗费大量的电能来维持稳定的运行,导致能耗较高。
2. 水资源浪费:传统冷却循环水系统中循环水需求大,使用大量的淡水和成本高昂的处理剂,导致资源浪费。
3. 设备运行不稳定:在传统冷却循环水系统中,由于水质的变化和管道堵塞,常导致设备运行不稳定,影响生产效率。
1. 优化设备结构:采用先进的冷却技术和设备,如采用高效节能的湿式冷却塔、换热器等,提高冷却效率,降低能耗。
2. 循环水处理:对循环水进行合理处理,采用水处理剂、水质在线监测技术等,保证冷却水质量稳定,延长设备使用寿命,减少设备维护成本。
3. 系统集成优化:通过智能化控制系统,实现冷却循环水系统的智能化管理和优化调节,减少不必要的能源浪费。
4. 冷却水回收利用:在冷却循环水系统中实施废水回收利用,将冷却水作为再生水资源,减少对淡水的需求,降低水资源浪费。
5. 能源再生利用:在循环冷却水系统中利用余热、余压等能源,如采用余热发电、余压发电等技术,实现能源的再生利用,提高能源利用效率。
1. 保护水资源:节能优化改进后的冷却循环水系统能够降低对淡水的需求,减少水资源的浪费。
2. 降低能耗成本:通过优化改进,能够降低冷却循环水系统的能耗,降低生产成本,提高企业的竞争力。
3. 减少环境污染:优化改进后的冷却循环水系统能够减少废水排放和能源消耗,减轻对环境的影响。
石化企业循环水系统的节能优化与应用摘要:为了响应国家有关节能减排、保护环境的号召,结合石化企业中大型循环水系统现状,目前有多种新型的节能设备及技术工艺有针对性的对老系统进行节能改造,以实现提升企业生产效率,节能降耗的目的。
关键词:循环水系统;节能优化;效率引言循环水系统是石油化工生产中冷却工艺热介质的重要辅助装置,常用的循环水系统是敞开式冷却水系统。
在生产过程中,循环水系统的巨大电力消耗在生产成本中占有较大份额,目前循环水系统普遍存在能量使用效率低、能耗高的现象。
随着节能环保要求的日益严格和科技的发展,利用现有技术,通过对循环冷却水系统的数据采集、分析和研究,在此基础上根据循环水系统运行工况,量身定做最匹配的节能改造系统优化,对于提高循环水系统利用效率、降低能耗作用明显。
本文对循环水系统目前存在效率低系统能耗高的原因进行了分析,并对系统优化方案进行了探讨。
1目前循环水系统运行存在问题从目前循环水系统的运行现状看,主要存在以下六点问题:(1)循环水泵的选型问题,循环水泵选型与实际运行不匹配,运行效率低,存在高扬程、低流量的情况,导致装置循环水系统换热器的流速偏低,影响换热效果。
(2)循环水系统存在局部偏流,部分循环水分支管线流速偏低,造成换热器换热效果差,多数情况下换热器循环水走管程,较低的流速容易造成循环水管束中的管路堵塞,形成垢下腐蚀。
(3)循环水系统的水轮机驱动方式一般有两种,一种是电机驱动,一种是水力驱动,从运行效果上看,目前的两种驱动方式各有利弊,均有优化空间。
(4)从循环水换热器打开检修看,存在结垢、腐蚀等现象,说明循环水水质存在问题,对于形成垢下腐蚀的原因需要彻底分析,对于循环水的加药配方调整和运行方式需要完善。
(5)循环水系统压力问题,这是一个综合性性问题,一般一个循环水系统同时供多套装置,特别是跨部门公用,对于循环水系统的管理就带来较大挑战,如何平衡系统压差和循环水换热器管束的流速,带来很大挑战。
大型企业循环水系统优化控制技术研究摘要:针对大型企业的循环水系统运行效率低下、能耗较高等问题,研究大型企业的循环水系统的控制技术,将多Agent协调控制理论、锁相同步技术应用到系统优化运行中,使得系统协调高效优化运行,可提高系统的自动化程度,管理水平,并降低系统的能耗,为企业带来了很大的经济效益。
关键词:循环水系统多Agent协调控制理论优化控制Abstract:For the problem of inefficient operation ,and large energy consumption of the circulating water system,Multi-Agent coordination and control theory and lock synchronization technology Were adapt to optimize the operation of the circulating water system.Through coordination between the Multi-Agent Systems and Agent coordination,the system was efficient operational optimization run. the optimal scheduling can improve the degree of automation,management level,reduce the energy consumption of the system and bring great economic benefits for enterprisesKey words:the circulating water system,Multi-Agent coordination and control theory,Optimal control随着我国国民经济的不断发展,大型重工业企业得到了迅速的发展。
电厂汽轮机冷端系统运行优化研究随着能源行业的不断发展,电厂的安全、稳定和高效运行至关重要。
其中,汽轮机冷端系统作为电厂中的重要组成部分,其运行状况直接影响着整个电厂的效率和性能。
因此,对电厂汽轮机冷端系统运行进行优化具有重要意义。
本文旨在研究电厂汽轮机冷端系统运行优化的方法,以期提高电厂的整体运行水平。
汽轮机冷端系统是指汽轮机排气口到凝汽器之间的系统,其运行优化对于提高电厂整体效率具有重要作用。
在国内外学者的研究中,冷端系统运行优化主要涉及以下几个方面:冷却水系统优化:通过改善冷却水系统的水流场和温度场分布,提高凝汽器的换热效果,降低排气温度。
真空系统优化:降低凝汽器内的真空度,提高汽轮机的进气量和做功效率。
凝汽器优化:采用新型的凝汽器设计,提高换热面积和换热效率。
循环水系统优化:通过优化循环水系统的运行方式,减少能量的损失和浪费。
尽管前人已经在汽轮机冷端系统运行优化方面取得了一定的成果,但仍存在以下不足之处:研究成果实际应用效果有待验证,部分优化方法存在一定的局限性。
多数研究仅单一方面的优化,缺乏对整个冷端系统的全局优化。
为了解决上述问题,本文采用以下研究方法对电厂汽轮机冷端系统运行进行优化:对冷却水系统、真空系统、凝汽器和循环水系统进行综合分析,找出系统的瓶颈和潜在的优化点。
通过实验和模拟相结合的方式,对各优化点进行详细的方案设计和效果预测。
结合实际应用场景,对优化方案进行现场测试和评估,根据测试结果对方案进行改进。
在此基础上,本文将采用理论分析和实验验证相结合的方法,对冷端系统运行优化展开深入研究。
通过对冷端系统进行详细的数学建模和仿真分析,得到系统的性能曲线和关键参数。
然后,根据实验结果,对各优化方案进行对比分析和评估,最终确定最佳的优化方案。
经过优化后,电厂汽轮机冷端系统的性能得到了显著提升。
具体来说,冷却水系统的优化使得凝汽器的换热效果提高了10%,降低了排气温度;真空系统的优化使得凝汽器内的真空度降低了15%,提高了汽轮机的进气量和做功效率;凝汽器的优化设计提高了换热面积和换热效率;循环水系统的优化使得能量损失和浪费减少了20%。
百万机组循环水泵方式优化调整1 循环水系统概述华电莱州发电有限公司2×1000MW机组的锅炉为东方锅炉(集团)股份有限公司生产的超超临界参数变压直流本生型锅炉,一次再热,单炉膛,前后墙对冲燃烧方式,尾部双烟道结构,采用挡板调节再热汽温,固态排渣,全钢构架,全悬吊结构,平衡通风,岛式布置(运转层以下封闭布置)。
汽轮机设备由东方汽轮机有限公司生产,汽轮机型号为N1000-25/600/600型超超临界、一次中间再热、单轴、四缸四排汽、凝汽式汽轮机。
循环水系统采用以海水为水源的单元制直流供水系统,每台机组配有三台循环水泵,夏季三台高速泵并联运行,冬季一台高速一台低速泵运行,机组单元制运行。
春秋季两台高速泵运行方式。
2 循环水系统运行方式切换依据为提高机组运行经济性,循环水泵运行方式切换遵循以下原则:当增加循环水量时,应使汽轮机功率增量ΔN大于循环水泵功率增量ΔN';当减少循环水量时,应使机组功率减少量ΔN小于循环水泵功率减少量ΔN'。
即增开循环水泵时,因机组效率提高带来的多发电量应大于循泵耗电量。
当机组负荷较高时,因凝汽器排汽热量大,增开循环水泵能够有效降低循环水温升,提高凝汽器真空。
当机组负荷较低时,排汽热量相对较少,停运循环水泵对真空的影响相对较少。
机组配套A、B(高低速)、C三台循环水泵,循环水泵不同运行方式组合有三种,循环水泵运行额定电流179A,额定功率2500(1823)kW,按照流量从大到小排列为:①三台高速泵;②两台高速泵;③一高一低速泵。
上述不同循环水泵组合方式下与循环水泵耗功见表1。
表1 循环水泵运行方式与循环水泵耗功试验结果由表1看出:单台机一高一低速泵耗功率3720kW;双高速泵运行期间,耗功率4345kW;三高速泵运行期间,耗功率6788kW,即双高泵运行较一高一低泵运行时,循环水系统耗功率增加625kW,三高速泵运行较双高速泵运行时,循环水系统耗功率增加2443kW.3 两台高速泵与三台高速泵运行方式之间的切换表2 增开第三台循泵背压变化表根据以上背压变化通过厂家提供的“背压与功率修正曲线”查得当循环水温度21.5℃时,负荷800MW,机组背压从5.87到5.53kPa,相对功率变化是-0.5%到-0.3%,升高0.2%,乘以1050MW得2100kW,即多发电2100kW(煤耗降低0.738g/kWh);增开循泵的2443kW(煤耗增加0.858g/kWh),总煤耗升高0.12g/kWh,是不合算的;负荷900MW,机组背压从6.66到6.21kPa,相对功率变化是-0.8%到-0.55%,升高0.25%,乘以1050MW得2625kW,即多发电2625kW (煤耗降低0.820g/kWh);增开循泵的2443kW(煤耗增加0.763g/kWh),总煤耗降低0.057g/kWh是合算的;当循环水温度23℃时,负荷800MW,机组背压从6.09到5.45kPa,相对功率变化是-0.54%到-0.2%,升高0.34%,乘以1050MW 得3570kW,即多发电3570kW(煤耗降低1.254g/kWh);增开循泵的2443kW(煤耗增加0.858g/kWh),总煤耗降低0.40g/kWh,是很合算的。
循环水系统运行方式优化
摘要:分析鹤煤公司热电厂停机后用电量高的原因,围绕热电厂自身的设备、系统特点对循环水系统运行方式调整优化,实现年节约发电成本15.58万元。
关键词:汽轮机凝汽器循环水泵启备变厂用电
中图分类号:tm621 文献标识码:a 文章编号:1007-3973(2013)008-088-02
鹤煤公司热电厂2*135mw机组为东方汽轮机厂生产的
c135-13.2/0.245/535/535型,超高压、单轴、双缸双抽(一级可调)、一次中间再热、凝气式汽轮机组。
配备东方锅炉厂生产的
dg445/13.7-ii1型,超高压、一次中间再热、单汽包、自然循环、集中下降管、全钢构架,∏形悬吊式露天布置锅炉。
发电机为东方电机厂生产的qf-135-2-13.8型空冷发电机组。
本厂#1、#2机组采用单元制运行方式,分别于2006年、2007年相继投产进入商业化运行,投运后两台机组均存在停机期间厂用电耗高问题。
现就机组停运后循环水系统运行方式进行分析研究。
1 现状情况
汽轮机组停运后转子惰走期间,为避免转子产生热弯曲,必须切断一切进入汽轮机的冷水冷气。
对于低压缸来说,机组停运后本体疏扩处仍有大量热量进入凝汽器,若此时停运循环水系统,极易造成凝汽器超压、低压缸安全门动作,甚至低压缸缸体受热变形损坏事故的出现。
因此《汽轮机运行规程》规定:在低压缸排汽温度高
于50℃的情况下必须保持循环水泵运行。
只有在低压缸排汽温度低于50℃且已确认无任何汽源进入凝汽器的前提下方可停运循环水泵。
在机组启动初期至机组接带厂用电之前,在此期间停运机组自身不发电,而且还要从电网吸收高价电量,特别是循环水泵,耗电量大,启动时间长。
由此带来了发电成本的提高。
因此如何优化机组停运后循环水系统的运行方式,在确保机组安全的前提下降低发电成本也就成为了亟待解决的问题。
2 系统简介
2.1 设备概况
(1)循环水泵。
循环水泵是循环水系统中最重要的设备之一,在热力系统中发挥着至关重要的作用。
机组运行中,凝汽器真空的形成主要依赖于循环水泵。
停运初期,低压缸的冷却也主要依靠循环水泵来完成。
鹤煤公司热电厂循环水泵为山东鲁能节能开发有限公司生产的
g40sh型卧式单级、双吸、壳体为水平中开式离心泵,转子可抽出,从电机端看,泵顺时针旋转,出口阀门采用液控蝶阀。
该循环泵额定流量为9510m3/h、额定扬程为19.7米、额定转速为750转/分。
配备上海电机厂生产的ykk560-8型电机,电机额定电压为6000v、额定电流为84.7a、额定功率为750kw。
(2)低压缸安全门。
为防止凝汽器超压造成的设备损坏,汽轮机低压缸均配置有安全门,若凝汽器压力高于其动作压力,其爆破片(石棉板)自动爆破
损坏,释放蒸汽减压,防止凝汽器超压和低压缸受热变形损坏,从而保护设备安全。
低压缸安全门特性:低压缸安全门为保障安全起见一般设置两个,材质为1mm厚石棉板,动作压力为20kpa。
2.2 系统流程
凉水塔蓄水池内的水经循环水进水间,到达循泵入口,然后用循环水泵将循环水通过管道进入凝汽器。
低压缸下部与凝汽器相连,循环水在凝汽器内经表面换热,循环水被加热温度升高;低压缸做过功的蒸汽进入凝汽器经冷却后凝结为水通过凝泵回收至锅炉再
次利用。
加热的循环水通过管道进入凉水塔冷却,汇集至冷水塔下部蓄水池内回收,形成一个完整的水路循环。
机组运行或停运初期,低压缸中的大量蒸汽通过凝汽器中的循环水得到冷凝,低压缸(即凝汽器)压力控制在合理范围内。
该机组在#1、2机组循泵出口设置有循环水泵出口联络门,经凝汽器冷却后进入凉水塔之前设置有循环水回水联络门。
在每个机组循环水出口进凝汽器之前的管道上分别引出直径为500mm管路,经阀门(直供水门)汇入一条母管向引风机和空压机房提供冷却水。
3 机组停运后对循环水泵运行时间的要求
(1)机组停运后排汽缸温度很快会降至50℃,此时虽然理论上可以停止循环水泵运行,但受本体疏扩处系统阀门内漏影响,仍有大量余热进入凝汽器。
如果此时停运循环水泵,进入低压缸内蒸汽得不到冷却,可能会出现凝汽器压力超过20kpa、安全门动作的后
果。
如果安全门因故拒动,则凝汽器可能出现因超压而损坏的恶性事故。
因此实际操作中均以汽轮机高压内缸内下壁金属温度为参考,高压内缸内下壁金属温度降至200℃时方能停止循环水系统运行。
(2)机组启动初期循环泵需要提前启动,向工业水系统提供水源,来保证各转机有足够的冷却水,向凝汽器提供冷却水保证配合锅炉启动。
机组启动初期,至自带厂用电之前,各转机设备所消耗的电量为电网通过启备变接带。
4 运行方式对经济性的影响
为保证低压缸的有效冷却,要求机组停运后循环水泵必须继续运行,这无疑将造成发电厂用电率的增加。
以汽轮机滑停结束后高压内缸内下壁金属温度330℃开始计算,自然冷却至高压内缸内下壁金属温度200℃,大约需要65个小时。
循环水泵电机功率为750kw。
即低压缸冷却至安全状态需要耗费48750kwh电能。
按月发电量6000万kwh计算,将使发电厂用电率增加0.08%。
如果#1#2机组每年累计停运按5次计算,则年可节约电量24.3万kwh。
按电网结算电价0.6元/kwh计算,则年可增加发电成本14.58万元。
机组从启动至自身接带厂用电大约需要10个小时,电网电价为0.6元/kwh,发电成本为0.33元/kwh。
每次冷态启动大约额外增加发电成本2000元左右。
如果#1#2机组每年累计停运按5次计算,每年增加发电成本1万元。
若对循环水系统进行优化运行年可降低发电成本15.58万元,可见机组停运后循环水泵的停运时间对经济性的影响是巨大
的。
5 系统优化
由图1我们可以看出,除本台机组的循环水泵可向本机提供循环冷却水外,邻机的直供水同样可为本机提供冷却水。
虽然压力较低,只有0.07mpa,但足可以满足机组停运工况下凝汽器的冷却要求,将凝汽器压力控制在0kpa以下。
因此在充分考虑机组安全的前提下,为节省厂用电,降低机组发电厂用电率,可考虑采用如下运行方式,即高压内缸内下壁金属温度达到300℃之前采用临机循环水泵运行方式,为低压缸提供冷却水。
当高压内缸内下壁金属温度降至300℃以下时停运循环水泵,开启邻机及本机直供水门,将邻机提供的直供水引至本机循环水系统,以此满足低压缸的冷却需要。
机组启动初期采用启动邻机循环水泵,开启两台机循环水泵出口联络门的办法,用邻机循环泵接带启动机组的循环水系统。
来降低启备变电量消耗,从而降低发电成本。
参考文献:
[1] 王国清.汽轮机设备运行[m].北京:中国电力出版社,2005.。