循环水系统工艺改造及优化运行
- 格式:doc
- 大小:125.50 KB
- 文档页数:6
电厂水处理工艺流程及优化摘要:从目前电厂的运行来看,水处理是电厂的重要生产工序。
水处理工艺流程的有效性以及工艺流程的优化关系到水处理是否能够满足生产需要和环保需要。
因此,我们应当根据电厂生产的特点,对水处理工艺流程进行研究,并提出具体的优化方案,使电厂水处理工艺流程更加合理更加有效。
关键词:优化;水处理;工艺引言水资源是人们赖以生存的保障,对于人们生活与社会发展具有重要作用。
在社会不断发展的过程中,水污染问题逐渐加重,日益影响人们的工作与生活。
为控制水污染,避免水资源浪费,人们要合理应用膜分离技术,使得生活污水等能够得到净化与处理,实现水资源的循环利用,为社会的更好发展提供保障。
1、电厂进行水处理的必要性在电厂生产中循环水是影响电厂生产效率和安全生产的重要因素。
对循环水进行有效的处理是电厂生产中的重要工序,同时也是电厂生产所必须满足的要求之一,对电厂的生产有着重要的影响。
由于电厂的循环水在生产过程中容易发生污染和浑浊的情况,如果进行大量的补水和换水不但增加成本,对电厂的生产也会造成不利影响。
而进行必要的水处理能够使水质量得到提高,满足电厂的生产需要。
2电厂水处理系统工艺流程2.1预处理电厂锅炉水处理工艺的第一个流程就是给水预处理,这一流程主要包括混凝、沉淀澄清以及过滤,经过这几项工作将水中的悬浮物及胶体物质去除,确保水中悬浮物的含量低于5mg/L,最终得到澄清水。
水经过预处理之后,还需要按照不同的用途进行深度处理。
如在火力发电厂作为锅炉用水,还必须用反渗透RO膜技术及离子交换的方法去除水中溶解性的盐类;用加热、抽真空和鼓风的方法去除水中溶解性气体如CO2等。
2.2补给水处理发电厂补给水处理方式多采用反渗透RO膜除盐和离子交换。
超滤UF在补给水处理系统中可用作RO反渗透进水的前处理,它可有效地去除水中胶体等颗粒状物,使反渗透进水水质合格,减少反渗透RO膜的污染,延长反渗透RO膜的使用寿命。
2.3凝结水处理火力发电厂锅炉的给水由汽轮机凝结水和锅炉补给水组成,凝结水是锅炉给水的主要组成部分,它的量占锅炉给水总量的90%以上。
化工厂循环冷却水系统节能改造方案经济性分析目前,国外工业循环水泵运行效率一般在70%左右,而我国平均运行效率约为50%左右,可见工业循环水系统节能有着广阔的空间。
化工厂冷却循环水系统运行时需要设置的参数较多,运行条件容易发生变化,循环系统中水泵机组的参数优化过程较为复杂,造成了冷却循环水系统在运行时实际工况容易偏离最佳工况点,即管路及水泵产生过多的无效阻力,造成系统能源利用率偏低,浪费电力严重。
标签:化工厂;循环冷却水系统;节能改造;方案经济性1 工业循环冷却水系统构成及原理工业循环冷却水系统,由单级双吸式离心泵,冷却塔,风机,旁滤系统,以及监测换热系统等部分构成。
通过离心泵将凉水塔池中的水打到生产车间的换热器中,从而给换热器将温,然后循环回来的水在泵压作用下流向塔顶,再通过横流式和逆流式冷却塔将其降温,如此循环往复,使水资源在不断冷却过程中,实现循环利用。
2 工业循环冷却水系统的安全与节能设计思路2.1 工业循环冷却水系统的安全问题及设计思路2.1.1 工业循环冷却水系统的安全问题工业循环冷却水系统安全问题,主要体现在以下方面:(1)水力不平衡:水力不平衡问题,一般由冷却水系统运行稳定性差有关,主要体现在流量以及压力不稳定两方面,从根源上看,在于系统设计不合理。
管路设计不合理,管径大小不符合系统需求,会导致设备与设备之间水头损失增加,致使水力不平衡问题发生。
(2)冷却塔冷却效果欠佳:冷却塔冷却效果差,易对系统的安全性造成影响,该问题一般由冷却塔位置不合理或进出水不均匀等多导致,冷却塔位置不合理,导致进风侧受遮挡,进出水不均匀,部分冷却塔承受冷却水量负荷过大,都会影响系统的安全性。
2.1.2 工业循环冷却水系统安全设计思路(1)水力不平衡问题的安全设计思路:在同一系统中,通常采用同一水泵加压,因此,各个设备最初压力相同,可通过以下思路,确保系统运行过程中,设备的水压相等:首先,调整水头损失,提高设备与设备之间压力的平衡性。
摘 要:某公司因烯烃装置与循环水进行热交换的冷却器系统存在着工艺侧长期泄漏,导致循环水浊度上升,换热器结垢严重,引起烯烃装置丙烯制冷压缩机出口压力高,导致烯烃装置被迫降负荷,造成效益损失。
通过在泄漏点投加杀菌剂,避免微生物滋生;同时引进撬装旁滤和提高旁滤量,使化工循环水浊度显著下降,生产装置处理能力得到有效提升。
关健词:循环水 烯烃装置 泄漏化工循环水系统存在问题及应对措施戴先进(福建联合石油化工有限公司,福建泉州 362800)收稿日期:2020-11-25作者简介:戴先进,工程师。
1999年毕业于同济大学环境工程专业,目前从事炼油化工一体化装置污水处理工作。
丙烯制冷压缩机是乙烯装置的心脏,也是影响生产稳定的关键设备。
丙烯制冷压缩机平稳运行,才能保证乙烯稳产高产,最终实现效益最大化。
而循环水对装置平稳生产,增收创效,起着保驾护航的作用。
1 化工循环水制约丙烯制冷压缩机的运行烯烃装置丙烯制冷压缩机出口压力经常超过高限值1.75 MPa ,详见图1,其一旦接近高高限联锁值1.92 MPa ,就会造成压缩机联锁停车。
为此,某公司在优化运行策略中明确要求,将该装置的生产负荷从400~436 t/h 调整至380~416 t/h 。
丙烯制冷压缩机出口压力由最后一级压缩后的丙烯气体在冷凝器实现全部冷凝后的温度决定。
循环冷水温度的高低直接影响着丙烯制冷压缩机的运 行[1]。
化工循环水场热水温度高、换热器结垢严重,导致换热器换热系数下降[3],并缩小了流通截面积[4],因此造成丙烯冷凝器的冷凝温度上升。
2 化工循环热水温度高的原因和解决措施2.1 烯烃热负荷超过循环水冷却能力对烯烃装置近期的运行数据进行整理,发现烯烃装置的热负荷超过循环水的冷却能力。
特别是夏天,循环冷水与热水温差最高接近14℃,平均10.97℃,已超过设计能力,如表1所示。
2.2 降低化工循环水的热负荷要降低烯烃装置的循环热水温度,就需要降低化工循环水的热负荷。
冷冻循环水工艺控制自动化控制配套改造方案动力分厂制冷装置属公司公用工程装置,主要功能系为PVA生产系统提供合格的冷冻水,其工艺装置具有工艺技术复杂、介质易燃、易爆、有毒等特点。
为淘汰落后产能,经动力分厂和公司职能部门初步认证拟定以下工艺改造方案。
工艺改造方案:1)拆除原有的8台活塞机,保留2台用于系统抽真空与打压用;2)拆除原有活塞机系统11台卧式蒸发器,4台氨液分离器,4台氨储槽,空气分离器,集油器,事故槽等设备及连接管道与阀门;3)拆除原有10台CXV-481所有出液管道与阀门,按BAC《蒸发式冷凝器工程手册》要求,对所有出液管进行改造;4)拆除原有的6台VC2-688蒸发式冷凝器及连接管道与阀门;5)拆除螺杆机系统中位于2楼的4台氨储槽;6)拆除冷循冷却塔级原泵房结构改造;7)拆除完毕后把两套螺杆压缩机组安装在原冷循泵房内;两套氨盐水撬块安装在原冷循塔二楼平台与新系统的16台蒸发器标高平齐;在原冷循二楼平台再新增一层平台,将拆除的6台VC2-688蒸发式冷凝器移至次平台上,与新系统的10台CXV-481蒸发式冷凝器标高平齐;将3台新氨储槽安装在原新系统的氨储槽处;经济器安装在新冷冻机房二楼与16台蒸发器在一个平面上。
然后用管道将所有的新设备连接起来,所有蒸发式冷凝器均并联,这样组成一个大的制冷系统,所有螺杆机互为备用,蒸发冷互为备用,盐水系统合并为一个系统。
根据以上工艺改造方案,并结合不拆除的8台螺杆冷冻系统以及配套用循环水系统的特点和控制要求,初步拟定如下自动化控制系统配套方案。
一、循环水工艺自动化控制方案:动力分厂循环水系统由1#循、2循、4循三套循环水装置共同组成,其中1#循、2#循为此次自动化控制改造的主体。
两套循环水系统均由循水池、冷却风机、循环水泵、循环水供水管线共同组成(详见工艺流图)。
其主要监控点由循环水泵、冷却风机的运行状态、电压电流、轴承温度、以及各类储水池液位、各类供水管线流量、压力、温度共同组成。
一种循环水系统的节能降耗技术改造随着科技的发展,设备数字化进程的加剧,循环水系统装置、运行维护成本更加依赖于设备。
如采用非国标产品,其产品的使用性能必然大打折扣。
例如,在运行期发生管材爆裂、接口漏水等,给运行维护造成很大的困难。
这就要求在设备前期审件时严把材料这一关,采购设备及管材时应考虑一至两家供货质量稳定、及时的供货商,并按时依据评价准则对其进行评价,保证检修配件的易得性、经济性。
在设备前期管理阶段的设备订购中充分考虑各种因素,以随机备件形式订购一批关键易损备件,对保障生产的长周期顺利运行和减少备件费用有积极的战略意义。
一、循环水基础因素分析水作为循环系统中输送能量的介质,其质量与数量直接影响循环运行的安全经济性。
首先,确保水质质量、保障安全经济运行。
锅炉房、换热站生产用水应采用合格的软化水,严禁采用自来水、地下水,否则将会造成锅炉、换热器结垢和腐蚀,增加能耗和设备大修费用。
因此水循环期间加大一次网、二次网巡查及相关制度的实施力度,确保一、二次网非正常失水。
另外,在实际工作中新技术的推崇和新工艺的发展也是不容忽视的环节。
其次,减小失水量,保障安全经济运行。
失水造成较大的经济损失甚至影响安全运行。
经分析外网大量跑水的原因主要有两个:一是管网老化、锈蚀造成的泄漏;二是用户私自放水。
针对以上原因采取如下措施:一是根据运行期管网泄露抢修情况,逐步更换超过使用期限的管网。
二是在运行期间采用在二次网中加臭味剂的方式有效防止用户私自放水。
二、运行成本及能耗分析运行成本分析,循环水装置在低温膨胀阀、过滤器及冷箱等物料使用消耗巨大,主要原因为:低温膨胀降压套筒阀多孔式芯频繁堵塞,年更换费用高装置采用日本引进的多孔式低温膨胀降压套筒阀节流轻烃降压制冷。
该阀由600余个© 0.5mm的孔隙构成,阀芯孔隙小,易被杂质、粉尘及水化物堵塞,需频繁更换阀座才能保证塔顶轻烃回流温度(回流温度视为影响轻烃收率的重要指标)。
循环水工岗位职责
循环水工是水处理工的一种,主要负责处理工业企业及生活用
水等的废水,使其达到环保和再利用的要求。
循环水工岗位职责如下:
1. 系统管理:负责循环水系统的运行、监控、维护、修理和改造;
2. 水质管理:对循环水的水质进行监测,包括PH值、溶解氧、浊度等指标的监测,及时处理各种异常情况;
3. 废水处理:负责循环水的回收、处理、净化和再利用,使其
符合国家和企业的相关标准和法规;
4. 设备操作:操作循环水设备,包括水泵、池塘过滤器、氧气
发生器、曝气机等设备;
5. 环保监测:对水处理环保情况进行监测,认真履行环保duty,发现问题及时报告和解决;
6. 紧急维护:出现设备异常、工艺问题等紧急情况时,及时处理,确保设备和工艺的正常运行;
7. 检查纪录:定期对设备进行检查、记录,分析数据,提出改
进措施;
8. 其他:参加团队交流、培训等活动,提高个人、部门和公司
的共同发展。
综上,循环水工的主要职责是确保循环水系统的正常运行和水
质安全,及时处理各种突发状况,同时也要认真履行自己的环保责任。
循环水系统换热效率降低的原因分析及对策[摘要]介绍塔河分公司循环水系统运行的现状,分析影响循环水系统换热效率降低的主要因素,以及如何提高循环水系统换热效率的改进措施。
[关键词] 循环水换热效率结垢黏泥运行管理在石化企业中循环冷却水系统运行的优异,对企业的产品质量、炼油收率、装置的能耗、以及节水等方面都有着较大的影响。
因此,提高循环水的有效运行效率(维持循环水的换热效率达到或优于设计指标),对企业而言有着显著的经济效益、环境效益和社会效益。
1 系统现状塔河分公司循环水系统是塔河分公司120万吨/年稠油技改项目的配套公用工程,主要承担为各生产装置提供循环冷却水的任务,设计供给量为4000m3/h,实际供给量3800m3/h。
循环水进出口水温差6-8度;浓缩倍数4-6偏高;电导率2800-3400 us /Cm偏高;ph值7.6-9。
从以上数据中可以看出循环水量与以往实际运行的水量相比(2800-3200 m3/h)偏大,进出口水温温差偏小(机械通风式为可大于8-10度)。
循环水系统热效率降低的主要因素是:1、循环水冷却塔的冷却效率下降;2、水质中的离子含量超过系统控制量,造成系统设备结垢趋势增大;3、系统细菌量超过控制量,引起大量黏泥产生,使系统的黏附速率增大等。
对照循环水系统热效率降低的主要因素,塔河分公司循环水存在的主要问题是: 1、风损水量大,造成浓缩倍数上升较快易使设备结垢;2、循环水冷却塔的冷却效率下降;3、系统黏泥产生快,有异味,挂片的腐蚀速度快(主要以点蚀为主);4、装置高温高位换热器结垢快;5、药剂和运行成本增加。
在存在问题中反映出循环水系统结垢和腐蚀的趋势在上升,逐渐破坏换热设备中的换热介质与被换热介质间的热传递,从而导致循环水系统换热效率的降低。
2 原因分析2.1 风损水量大,造成浓缩倍数上升较快,易使设备结垢;塔河分公司循环水系统在设计上虽考虑了当地的环境因素,但因设备制造、干燥的高温气候以及较大的风沙环境的原因,与其它地区的循环水系统相比存在蒸发和风损水量大;其次,09年5月大检修时,填料上面的吸水板的安装间隙较大,部分吸水板的安装方向不对,造成吸水板不能有效阻止水的外泄,在循环水机械风机的作用下,引起较多水的外泄。
探讨石油化工循环水系统节能优化技术发布时间:2021-09-27T05:59:37.081Z 来源:《城镇建设》2021年第14期作者:丁太伟闫俊冯万军[导读] 石油化工行业是我国工业体系的重要组成部分,关系到社会基本的能源供应,与国民经济的发展有着非常丁太伟闫俊冯万军兰州石化公司甘肃省兰州市 730060摘要:石油化工行业是我国工业体系的重要组成部分,关系到社会基本的能源供应,与国民经济的发展有着非常密切的联系。
而对石油化工的生产而言,循环水系统发挥的作用是非常重要的,但同时循环水系统也面临着能源消耗大的缺陷,已经对石油化工的正常生产活动形成了影响,在这样的情况下,采取合理的节能技术来对循环水系统进行优化,以提高其能源利用效率是非常有必要的。
关键词:石油化工;循环水系统;节能优化技术众所周知,化工行业一直是高能耗行业,其生产过程通常面临着极大的能源消耗,由此而造成的经济支出占据生产成本相当一部分,循环水系统作为化工生产过程中能源消耗的大头,必须要通过节能技术对其进行改造与优化,才能满足化工企业的低能耗的生产需求,达到理想的节能效果。
1.水轮机改造与应用化工生产过程中直接应用的能量形式主要为机械能,水轮机则是将水的动能转化为机械能的重要装置。
在水轮机系统,当水流处于循环状态下时,通过逆冷却塔的作用,对循环水的输出进行控制,便可以实现对水能向机械能的转化,以供化工生产进行利用。
在这一过程中,水轮机的机械效率直接影响到能量的转化效率,对其设计布局进行改造,以定向对水轮机电压进行控制,便可以在一定程度上实现节能的目的。
水轮机改造通常要与电能的消耗情况进行结合,才能保证节能效果的实现。
目前石油化工水轮机改造主要是在冷却塔风机系统中,用循环水余压驱动来代替电机驱动,如此便可减少冷却塔风机的能量消耗,这一过程优化了水轮机在实际生产过程中的利用效率,同时也减小了噪声其他污染的产生。
这一技术改造措施适用于高位装置的循环水系统,自流回水能够产生较大的压力,进而才可以带动水轮机转动[1]。
浅谈循环水冷却系统的节能改造摘要:随着城市建设的发展,越来越多的公共建筑内设置了中央空调系统,循环水冷却系统成为不可缺少的部分。
循环水冷却系统是工业企业不可或缺的重要设备,水冷却系统通常由冷却塔、水泵和换热系统等组成,其工作流程是由冷水流过需要降温的生产设备有效换热后再返回冷却塔,通过冷却塔内将温度上升的循环水降温,然后通过循环水泵加压后再次循环使用。
关键词:循环水冷却系统节能改造前言:循环水冷却系统作为企业主要的供能设备,占企业用电量的比重相对较大,在国家日渐提倡重视节能环保的新时代下,通过对循环水冷却系统进行节能改造而降低用电消耗,不仅能为企业创造较好的经济效益,更能实现良好的社会效益,在工业循环水冷却系统中循环水泵、冷却塔风机是用电大户,所以节能改造的关键点在于研究如何对循环水泵和冷却塔风机进行节能改造,本文就具体的节能改造措施进行简单阐述。
循环水处理作为电厂水处理系统中最重要的工作,要保持循环冷却水系统长期、高效、经济地运行,水处理日常运行管理是关键,有时即使筛选了合理的药剂配方,也确定了较好的工艺参数,但循环水处理运行管理不善往往达不到预期的处理效果。
因此长期积累运行资料并认真加以分析研究,不断优化循环水处理运行方式才能提高管理水平和效果。
1.循环水泵的节能改造近年来随着工业生产的发展,淡水资源日益紧张,环境保护要求日趋严格,为了保护有限的水资源和生态环境不被破坏,达到国家要求的控制指标,减少废水排放。
发电厂作为用水大户,90%以上水量主要用作循环冷却,为使排水各项指标均达到排放标准,只有合理选择循环水处理方案,避免凝汽器和其他换热设备的腐蚀和结垢,减少循环水排污水实现零排放是摆在运行管理人员面前的一项重要使命。
水冷却系统的循环水泵作为主要的动能设备,占能源消耗的比重相当大,循环水泵方面除采用高效节能泵外还可以通过以下几个方面进行节能改造,一是通过水泵的富余流量分析,以控制循环水泵的回水阀门开关度的方式来调节循环水的供应压力,在满足系统运行的实际扬程情况下低于水泵的设计扬程时,可以有效避免因额外的循环量而产生的能效浪费;二是随着高压大功率电机变频调速技术的不断成熟,运用变速变流量的节能原理,根据水泵的压力和流量特性曲线,在保证循环水冷却系统压力的前提下,采用对循环水泵电机调节方式进行变频改造来实现优化节能,根据循环水泵的转速、扬程、功率与节电率的变化,在转速降低、流量减小时,电机所需功率近似按流量的3次方大幅度下降,虽然降低转速时额定的工作参数会相应降低,但水泵仍能在同样的效率下工作,所以降低转速能大大降低轴功率从而达到节能的目的;循环水泵在进行变频节电改造后,改造后的变频系统相当于一个全自动的调节阀,水泵降低了转速,流量就不再用关小阀门来控制,阀门始终处于全开状态,避免了由于关小阀门引起的能效损耗,同时也避免了总效率的下降,确保了能源的充分利用,设备需要多少,就能供应多少;在采用变频调速时,50Hz工况下满载时功率因数为接近1,工作电流比电机额定电流值要低很多,是因为变频装置的内滤波电容产生的改善功率因数的作用,可以为电网节约20%左右的容量,从而确保了能源的有效利用;三是降低水泵出口压力,通过对水冷系统运行参数和水泵设计参数进行充分的分析比较,通过对循环水泵进行削切叶轮来减小叶轮直径,降低水泵扬程和水泵出口压力,从而达到降低水泵电耗的目的。
循环水系统工艺改造及优化运行
摘要:仪征化纤股份有限公司水务中心三区循环水(原涤纶三厂)始建于1989年,由于三区循环水东、西站是分期建设,两套系统全部建成后,将系统供回水管网进行连通,安装隔断阀控制,隔断阀长期处于关闭状态,但随着运行时间的增加,两套系统存在互窜的现象,影响系统水质状况;且三区循环水设有两套系统,使系统呈现资源配置分散、利用率低的现状,需要对两套系统进行合并运行、工艺优化。
关键词:循环水处理;系统合并运行;节能降耗
节能降耗是我国经济和社会发展的一项长远战略,近年来各种节能降耗的措施、政策和目标在
不断制定和完善,同时政府也相应投入大量资金用于支持节能降耗项目的开展。
循环水泵站作为公用工程的主要耗能设备,节能改造空间较大,因此循环水泵站及其系统的节能降耗工作具有重要的意义。
1循环水系统概况
仪征化纤股份有限公司水务中心三区循环水(原涤纶三厂)始建于1989年,三区循环水由东、西站两套系统组成,由于东、西站循环水是分期建设,待两套系统全部建成后,将供回水管网进行连通,并装有系统隔断阀,隔断阀长期处于关闭状态。
西站循环水原设计供水能力为3300m3/h,设有4台循环水泵和4组冷却塔,主要用户为聚酯七、八单元,50~70岗位,短纤中空17~18K和23~26K;东站循环水原设计供水能力为9000m3/h,设有10台循环水泵和6组冷却塔,其中4台B02循环水泵专供聚酯九、十三单元及切片生产、长丝空压站、长丝一装置等用户,6台B01水泵专供冷冻系统。
由于原涤纶三厂完全是分期规划、分期建设,西站循环水原设计只考虑七、八单元建设所需循环水量,对于后期建设项目所需循环水均在东站循环水建设中考虑,因而形成现在的东西两个循环水站,客观上造成整个系统呈现资源配置分散,利用效率降低,且随着运行时间的增加,两套系统存在互窜现象,影响水质状况,对系统稳定运行产生影响,所以可利用目前七单元切片生产停运、长丝转产短纤、聚酯工艺调优、冷冻机改造优化循环水需求量不断下降的机会,对两套系统进行合
并运行,进行系统节能降耗、优化运行工作。
2运行存在问题
2.1系统水泵运行组合方式不合理
由于原一、二、三厂聚酯系统生产规模相差不大,但原三厂需运行四台泵才能满足生产需求,
而原一、二厂仅需运行三台水泵即可满足生产需求,且从下表分析中可以看出原三厂的单位能耗高于原一、二厂,说明运行四台水泵存在能源浪费的现象,水泵运行组合方式未处于最佳状况,具备节能改造空间。
表1 原一二三厂循环水系统概况对比表
东西站循环水供回水管线中的隔断阀由于设备故障无法完全关闭,造成两个系统间窜水,部分东站循环水进入西站系统中,相当于西站使用东站循环水进行系统补水,使西站各项水质数据较高,且从表1中可看出,西站各项水质数据均明显高于东站。
表1 2012年三区循环水东西站水质数据对比表
量却与东站基本持平,且数据时有超标,说明东站循环水窜入西站系统中,对西站系统运行产生一定影响。
表2 2012年三区循环水东西站加药、补水数据对比一览表
水务中心循环水装置于2013年1月7日在生产部牵头、中心组织下进行三区循环水东西站合并运行,实现东站代西站运行,东站循环水系统运行3台B02水泵,负责供应整个原三厂界区内所有用户,目前系统运行稳定。
表2 循环水东西站停运操作前后工艺数据对比表
东站运行3台水泵,供水总流量由4100m3/h(1908m3/h+2185m3/h)下降为3400m3/h,供水压力、温度较合并前变化不大,且各用户无异常反应,说明东站运行3台水泵能够满足当前用户需求,系统运行正常。
4系统并网运行后存在问题
4.1受原三厂循环水系统分期规划建设的影响,东西站聚酯楼管道连接处最小管径为DN400,正常流通能力为1100m3/h,该处需要通过的能力根据西站供水量应在1900m3/h左右,存在明显“卡脖子”现象。
4.2东站供聚酯系统有4台泵,管网合并后系统运行三台水泵,仅剩一台备台,存在安全生产隐患。
4.3由于东站负荷增加,循环水供应量达到3500 m3/h左右,超过水轮机设计负荷3000m3/h。
5改造措施
5.1采用不停车带压开孔技术在东、西站聚酯楼相连接的DN600供回水管两侧铺设DN450旁路管,扩大系统管网流通能力。
5.2把东站B01/A原供冷冻系统的水泵更换为流量2000m3/h、扬程59m的新泵(电机不换)改供聚酯系统,原B01/A泵移至故障停运的B01/C泵上(详见图1),聚酯系统设置一大四小五台水泵,供水高峰期运行一大两小水泵,确保生产稳定、供水安全。
5.3在水轮机的入口增加一个DN700流量控制阀,同时增加一个DN700的旁通阀进行分流,降低水轮机生产负荷,同时拆除原T2隔断盲板,将T1、T2两个塔全部作为聚酯回水冷却使用。
以上改造措施正在实施中,预计2013年6月初可以完成改造工作,确保夏季供水安全。
B01/A
B01/B
B01/C
供冷冻
图1 水泵改造示意图
6经济效益分析
通过本次合并停运操作,成功地将西站停运,实现东站代西站供水,且保证各用户供水流量、压力稳定,系统运行正常,并从设备电量、系统水质、化工料消耗等方面进行对比分析,积累经验为下一步循环水改造提供技术支持。
6.1耗电量下降效益分析
通过本次系统合并运行,高压端用电(水泵)由运行4台水泵(西站两台280kW 水泵+东站两台315kW 水泵)调整到运行3台水泵(东站三台315kW 水泵),所以高压端电量因循环水泵运行台数的减少而大幅度下降;低压端用电因西站风机、照明、电加热监测换热器等设备停运而减少。
截止到2013年12月底,三区用电量累计值为1223.0377万kWh ,较去年同期下降256.3763万kWh ,根据成本核算,上网电价为0.45元/kWh ,直接经济效益为: 256.3763万kWh ×0.45元/kWh=115万元。
6.2系统水质合格率上升
系统合并停运前,受跨接阀窜水影响,部分药剂流失,导致水质波动较大,2012年全年西站水质综合合格率为99.1%,其中有机磷含量共超标27次,东站水质综合合格率为99.1%,其中有机磷含量共超标8次;而系统合并运行后,2013年全年期间东站循环水有机磷控制平稳,仅有2次超标,全年累计综合合格率为99.8%,说明合并运行后系统水质运行控制平稳,较合并前有了大幅度提高,具体数据见表3。
表3 系统合并前后水质数据对比表
6.3循环水温差上升
受循环水用户供水负荷以及本身冷却塔局限性影响,西站循环水温差合格率较低,虽然通过与聚酯短纤用户的不断调整优化,供回水温度有所提高,西站2012年全年累计温差平均值为5.4℃,但总体仍未达到中石化6℃的温差要求。
而系统合并后,对西站进行停运,彻底解决西站温差不达标的问题,且2013年全年东站供回水温度平均值为7.28℃,较去年同期上升了4%,较合并前供回水温差有所提高。
7结语
为了进一步达到节能降耗的目的,循环水节能工作应当根据不同用户对换热器进出水温度、压力等工艺需求,以及生产负荷不同、实际情况的差异,不断优化调整循环水系统阀门的开度,同时调整水泵运行组合方式,具体的实际循环水系统节能技改,应根据企业各种能耗不利因素,有针对性的提出节能技改方案,从而降低循环水系统总体运行能耗。