恒定磁场的基本方程
- 格式:pdf
- 大小:319.78 KB
- 文档页数:10
恒定磁场基本方程的微分形式引言恒定磁场是指磁场中磁感应强度、磁场强度、磁场偏转角等参数在时间和空间上均保持不变的情况。
恒定磁场具有许多重要应用,例如电动机、发电机、磁共振成像等。
为了深入了解恒定磁场的基本方程,需要进行微分形式的推导和讨论。
恒定磁场基本方程在恒定磁场中,我们可以根据安培定律推导出磁场的基本方程。
安培定律表明,在闭合回路中,电流周围的磁场的环绕方向是闭合回路上的电流方向,其磁感应强度大小与电流大小成正比。
根据安培定律,我们可以得到恒定磁场的基本方程的微分形式:1. 电流元在磁场中受到的磁场力表达式为:dF =I (dl ×B ),其中dF 表示电流元受力的微元,I 表示电流,dl 表示电流元的微元长度,B 表示磁感应强度。
2. 根据叉乘的性质,可以得到上式的分量形式:{dF x =I(B z dy −B y dz)dF y =I (B x dz −B z dx )dF z =I(B y dx −B x dy)3. 利用矢量分析中的散度和旋度概念,可以进一步将上述方程转化为微分形式:{ ∂B x ∂x +∂B y ∂y +∂B z ∂z =0∂B x ∂t =0∂B y ∂t =0∂B z ∂t =0上述方程描述了恒定磁场的基本特性,其中第一个方程表示磁场的无源性,即磁感应强度的散度为零;后三个方程表示磁场随时间不变,即磁感应强度对时间的偏导数为零。
恒定磁场中的应用和意义恒定磁场具有许多重要的应用和意义,下面将从以下几个方面进行讨论:1. 电动机和发电机在电动机和发电机中,恒定磁场被用于产生磁场,从而实现电动机的旋转和发电机的电能转换。
利用恒定磁场的基本方程,可以对电动机和发电机的性能进行分析和优化。
2. 磁共振成像磁共振成像(MRI)是一种利用恒定磁场和变化磁场的共同作用原理进行医学影像诊断的技术。
MRI利用恒定磁场对人体组织中的原子核进行定向,然后通过应用变化磁场使原子核进入共振状态,进而通过检测共振信号获得影像信息。
恒定磁场基本方程的微分形式为恒定磁场基本方程的微分形式为什么重要?磁场是物理学中的一个重要概念,它与电场一起构成了电磁场。
在恒定磁场中,磁感线是直线或圆弧,而且磁感线的密度相等。
恒定磁场的基本方程可以用来描述磁场的性质和行为,因此它是理解和应用磁场相关知识的基础。
一、什么是恒定磁场?恒定磁场指在空间某个区域内,时间不变或者时间变化很缓慢,且空间各点处的磁感应强度大小、方向都不随时间改变或者改变很小。
在这种情况下,我们可以使用静电学类比来处理问题。
二、什么是恒定磁场基本方程?1. 定义根据安培环路定理(又称安培第二定律),在任何闭合回路上,通过该回路的电流总和等于该回路所包围区域内的总电流。
在恒定磁场中,该定理可以表示为:∮B·dl = μ0I其中B表示磁感应强度(单位:特斯拉),l表示回路的长度,I表示通过该回路的电流(单位:安培),μ0表示真空中的磁导率(单位:亨利/米)。
2. 微分形式根据斯托克斯定理,一个闭合曲线所包围的面积内的旋度等于该曲线沿着法向方向的环流密度。
在恒定磁场中,该定理可以表示为:∇×B = 0其中∇表示偏微分算子,×表示向量积运算。
将斯托克斯定理应用于一个无限小的闭合回路上,则有:∮B·dl = ∫(∇×B)·dS其中dS表示曲面元素面积。
由于恒定磁场中磁感应强度不随时间变化,因此我们可以将上式简化为:∇×B = 0这就是恒定磁场基本方程的微分形式。
三、为什么恒定磁场基本方程的微分形式重要?1. 描述磁场性质恒定磁场基本方程的微分形式可以用来描述恒定磁场的性质和行为。
它告诉我们,在恒定磁场中,任何一个点处的旋度等于零。
这意味着在任何一点处,磁场的方向是唯一的,因为不存在旋转的磁场线。
这也意味着磁场是无源场,即不存在产生磁场的电荷或电流。
2. 解决问题恒定磁场基本方程的微分形式可以用来解决一些与恒定磁场相关的问题。
第 4 章恒定磁场4.2 真空中恒定磁场的基本方程应用举例半径为 a 的无限长直导体圆柱均匀通过电流 I ,计算导体内外的B 。
解: ⑴ 电流分布具有轴对称性,选柱坐标⑵ 分析磁场的分布 zaI⑶ 沿磁感应线取B 的线积分沿ϕ 方向 ∑⎰==∙I B c02d μπρl B ρ ≤ a 时222aIJ I ρπρ==∑2022022aI a I B πρμρπρμϕ==∴ρ ≥ a 时πρμϕ20IB =II =∑例1两相交圆柱,半径同为a ,轴线相距 c ,通过强度相等方向相反的电流 I ,因而相交部分J = 0。
证明相交区域是匀强磁场。
证: ⑴ 两圆柱单独存在时,均具有轴对称性,选两套柱坐标 ⑵ 计算相交区域任取一场点P 的磁感应 22101d a Icρμ=∙⎰l B 201221101221a I a I z πμρπρμϕρa a B ⨯==22202d aIcρμ=∙⎰l B2022222022)(22aI a I z πμρπρμϕρa a B ⨯-=-=202020*******)(a Ica I a I yz z πμπμπμa c a ρρa B B B =⨯=-⨯=+=例2 O 1 O 2 Pρ1 ρ2 ⊗ ⊙ I Iz x无限大平面上均匀分布面电流J s ,求距此平面 r 处的磁感应B 。
解: ⑴ 电流分布具有平面对称性,选直角坐标。
设J s = a z J s⑵ x >0,磁场方向沿 +y 轴;x <0,磁场方向沿 –y 轴⑶ 在xOy 上选取图示矩形回路lJ l B cs 02d μ==∙⎰l B 2s0J B μ=例 0, 20>x J y sa μ0, 20<-x J y sa μ=B z xy J zz xy J zl。