真空恒定磁场基本方程
- 格式:ppt
- 大小:294.00 KB
- 文档页数:7
磁场公式知识点总结磁场是物质中的磁性物质所产生的力场。
它由两个物理量描述:磁场强度和磁通量密度。
在物理学中,磁场公式是用数学方程式描述磁场的性质和行为的。
磁场公式是基于麦克斯韦方程组的解析推导而得到的,它们包含了电场和磁场的关系和相互作用。
下面将介绍磁场公式的基本知识点和相关内容。
一、磁场的基本概念1. 磁场的概念磁场是指磁体所处的空间中存在的磁力场。
磁体产生的磁场称为自发磁场,所有物质(包括真空)中的磁场称为磁感应强度。
2. 磁场的特点磁场具有方向性和强度性,是一种矢量场。
磁场的方向是从北极指向南极,磁力线是磁场的可视化表示,它们是磁场的方向。
3. 磁场的单位磁场的单位是特斯拉(T)和高斯(G)。
1T=10000G。
在SI国际单位制中,磁感应强度的单位是特斯拉(T),而在厘米—克—秒(cgs)单位制中,磁感应强度的单位是高斯(G)。
二、磁场公式的推导麦克斯韦方程组是描述电磁场的基本方程,包括电场和磁场的关系和相互作用。
这些方程组包括:1. 麦克斯韦第一方程:电场的散度与电荷密度之比等于真空中电场的散度$\nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}$2. 麦克斯韦第二方程:磁感应强度的旋度等于真空中电场随时间的变化率与电场的负梯度之和$\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}$3. 麦克斯韦第三、第四方程:磁场的散度等于零,电场的旋度等于真空中磁感应强度随时间的变化率与磁感应强度的负梯度之和$\nabla \cdot \mathbf{B}=0$$\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$这些方程组经过推导和简化,得到了描述磁场的基本公式和定律。
恒定磁场基本方程的微分形式引言恒定磁场是指磁场中磁感应强度、磁场强度、磁场偏转角等参数在时间和空间上均保持不变的情况。
恒定磁场具有许多重要应用,例如电动机、发电机、磁共振成像等。
为了深入了解恒定磁场的基本方程,需要进行微分形式的推导和讨论。
恒定磁场基本方程在恒定磁场中,我们可以根据安培定律推导出磁场的基本方程。
安培定律表明,在闭合回路中,电流周围的磁场的环绕方向是闭合回路上的电流方向,其磁感应强度大小与电流大小成正比。
根据安培定律,我们可以得到恒定磁场的基本方程的微分形式:1. 电流元在磁场中受到的磁场力表达式为:dF =I (dl ×B ),其中dF 表示电流元受力的微元,I 表示电流,dl 表示电流元的微元长度,B 表示磁感应强度。
2. 根据叉乘的性质,可以得到上式的分量形式:{dF x =I(B z dy −B y dz)dF y =I (B x dz −B z dx )dF z =I(B y dx −B x dy)3. 利用矢量分析中的散度和旋度概念,可以进一步将上述方程转化为微分形式:{ ∂B x ∂x +∂B y ∂y +∂B z ∂z =0∂B x ∂t =0∂B y ∂t =0∂B z ∂t =0上述方程描述了恒定磁场的基本特性,其中第一个方程表示磁场的无源性,即磁感应强度的散度为零;后三个方程表示磁场随时间不变,即磁感应强度对时间的偏导数为零。
恒定磁场中的应用和意义恒定磁场具有许多重要的应用和意义,下面将从以下几个方面进行讨论:1. 电动机和发电机在电动机和发电机中,恒定磁场被用于产生磁场,从而实现电动机的旋转和发电机的电能转换。
利用恒定磁场的基本方程,可以对电动机和发电机的性能进行分析和优化。
2. 磁共振成像磁共振成像(MRI)是一种利用恒定磁场和变化磁场的共同作用原理进行医学影像诊断的技术。
MRI利用恒定磁场对人体组织中的原子核进行定向,然后通过应用变化磁场使原子核进入共振状态,进而通过检测共振信号获得影像信息。
第 4 章恒定磁场4.2 真空中恒定磁场的基本方程应用举例半径为 a 的无限长直导体圆柱均匀通过电流 I ,计算导体内外的B 。
解: ⑴ 电流分布具有轴对称性,选柱坐标⑵ 分析磁场的分布 zaI⑶ 沿磁感应线取B 的线积分沿ϕ 方向 ∑⎰==∙I B c02d μπρl B ρ ≤ a 时222aIJ I ρπρ==∑2022022aI a I B πρμρπρμϕ==∴ρ ≥ a 时πρμϕ20IB =II =∑例1两相交圆柱,半径同为a ,轴线相距 c ,通过强度相等方向相反的电流 I ,因而相交部分J = 0。
证明相交区域是匀强磁场。
证: ⑴ 两圆柱单独存在时,均具有轴对称性,选两套柱坐标 ⑵ 计算相交区域任取一场点P 的磁感应 22101d a Icρμ=∙⎰l B 201221101221a I a I z πμρπρμϕρa a B ⨯==22202d aIcρμ=∙⎰l B2022222022)(22aI a I z πμρπρμϕρa a B ⨯-=-=202020*******)(a Ica I a I yz z πμπμπμa c a ρρa B B B =⨯=-⨯=+=例2 O 1 O 2 Pρ1 ρ2 ⊗ ⊙ I Iz x无限大平面上均匀分布面电流J s ,求距此平面 r 处的磁感应B 。
解: ⑴ 电流分布具有平面对称性,选直角坐标。
设J s = a z J s⑵ x >0,磁场方向沿 +y 轴;x <0,磁场方向沿 –y 轴⑶ 在xOy 上选取图示矩形回路lJ l B cs 02d μ==∙⎰l B 2s0J B μ=例 0, 20>x J y sa μ0, 20<-x J y sa μ=B z xy J zz xy J zl。
恒定磁场的基本方程和边界条件1. 嘿,你知道恒定磁场不?它的基本方程就像一把神奇的钥匙呢。
就好比你要打开一扇神秘的门,这方程就是开锁的关键。
高斯定理说通过任意闭合曲面的磁通量恒等于零。
比如说,你想象一个完全封闭的盒子,磁场线就像一些调皮的小虫子,它们进进出出这个盒子,但总体数量不会有变化,既不会凭空多出来,也不会无端消失。
这多有趣呀,感觉磁场就像一个有秩序的小世界。
2. 恒定磁场的安培环路定理也很厉害哦。
这就像在一个迷宫里找路,磁场强度沿着闭合路径的线积分等于穿过这个路径所围面积的电流的代数和的μ₀倍。
打个比方,假如电流是一群奔跑的小怪兽,磁场强度就是跟着它们跑的小尾巴。
你看那些电线里的电流在流动的时候,周围就会产生磁场,这个磁场就按照安培环路定理的规则存在着。
你说神奇不神奇?3. 那恒定磁场的边界条件又是怎么回事呢?这就像两个不同的国家之间的边境规则。
在两种不同磁介质的分界面上,磁场强度的切向分量是连续的。
就好像两个人在边境上握手,虽然两边的情况可能有些不同,但这握手的力度(切向分量)是一样的。
比如说,一块铁和空气的交界处,磁场强度的切向部分不会突然变个样。
4. 再说说磁感应强度的法向分量吧。
在两种磁介质的分界面上,磁感应强度的法向分量满足一定的关系。
这就像两个相邻的池塘,水面高度(类比法向分量)有一定的关联。
假如一个池塘里的水涨一点,另一个池塘也会受到影响。
就像在磁介质中,一边的磁感应强度的法向分量改变了,另一边也会跟着有相应的变化。
这是不是很像一种默契呢?5. 你可别小瞧这些恒定磁场的方程和边界条件啊。
它们就像魔法咒语一样,掌控着磁场这个神秘的魔法世界。
你想啊,如果没有这些规则,磁场就像一群没头的苍蝇,到处乱撞。
就像一个没有交通规则的城市,汽车到处乱开,那可就乱套了。
而这些方程和条件就是磁场世界的交通规则,让一切井井有条。
6. 我跟你讲,理解这些就像解开一个超级有趣的谜题。
就像玩拼图,每一块都很重要。
磁场基本方程磁场基本方程是描述磁场的物理规律的方程,它是电磁学的重要基础。
磁场基本方程包括麦克斯韦方程组和洛伦兹力公式。
本文将分别介绍这两个方程,以及它们在磁场研究中的应用。
一、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程,它由四个方程组成,分别是高斯定律、法拉第电磁感应定律、安培环路定律和法拉第电磁感应定律的积分形式。
这四个方程分别描述了电场和磁场的产生、传播和相互作用。
1. 高斯定律高斯定律描述了电场的产生和传播。
它表明,电场线的起点和终点分别对应正电荷和负电荷,而电场线的密度与电场的强度成正比。
高斯定律的数学表达式为∮E·dA = Q/ε0,其中∮E·dA表示电场E在闭合曲面上的面积分,Q表示曲面内的电荷总量,ε0为真空中的介电常数。
2. 法拉第电磁感应定律法拉第电磁感应定律描述了磁场的产生和变化。
它表明,磁场的变化会引起感应电场的产生,感应电场的大小与磁场的变化率成正比。
法拉第电磁感应定律的数学表达式为∮E·dl = -dΦB/dt,其中∮E·dl表示电场E沿闭合回路的线积分,dΦB/dt表示磁通量ΦB 对时间的变化率。
3. 安培环路定律安培环路定律描述了电流和磁场的相互作用。
它表明,电流会产生磁场,并且磁场的强度与电流的大小成正比。
安培环路定律的数学表达式为∮B·dl = μ0I,其中∮B·dl表示磁场B沿闭合回路的线积分,μ0为真空中的磁导率,I表示回路内的电流。
4. 法拉第电磁感应定律的积分形式法拉第电磁感应定律的积分形式描述了电磁感应现象。
它表明,磁场的变化会引起感应电动势的产生,并且感应电动势的大小等于磁场变化的速率乘以回路的面积。
法拉第电磁感应定律的积分形式的数学表达式为∮E·dl = -d/dt ∬B·dA,其中∮E·dl表示电场E 沿闭合回路的线积分,∬B·dA表示磁场B通过闭合曲面的面积分。
恒定磁场基本方程的微分形式
恒定磁场基本方程的微分形式是指表达磁场变化率的一种方程形式,其中包括了磁场的旋度和磁场随时间变化的导数。
在电磁学领域中,磁场是一种非常重要的物理量,它与电场一起构成了电磁场,是电磁学理论的基础之一。
恒定磁场指的是磁场在时间上不发生改变的情况,因此可以将磁场看做是一个恒定的场。
对于恒定磁场,其基本方程可以表示为:
∇×B = μ0J
其中,B是磁场,J是电流密度,μ0是真空中的磁导率,∇×表示旋度运算符。
这个方程表达了磁场的旋度与电流密度之间的关系,可以通过旋度运算符来求解。
旋度运算符是一个矢量运算符,用于计算一个矢量场的旋度。
它将一个矢量场的偏导数进行了组合,并给出了一个新的矢量场。
在这个方程中,磁场的旋度表示了磁场的变化率,而电流密度则表示了磁场的来源。
这个方程告诉我们,如果我们知道了磁场的变化率和电流密度,就可以求解出磁场的分布情况。
如果我们考虑磁场随时间的变化,那么可以将上述方程进行扩展,得到恒定磁场基本方程的微分形式:
∇×E = -∂B/∂t
其中,E是电场,B是磁场,∂/∂t表示对时间的偏导数。
这个方程表示了电场的旋度与磁场随时间变化的导数之间的关系。
它告诉我们,如果我们知道了磁场随时间的变化率和电场的旋度,就可以求解出电场的分布情况。
恒定磁场基本方程的微分形式是电磁学中非常重要的一个方程形式。
它将磁场的变化率和电流密度联系起来,以及将电场的旋度和磁场随时间的变化联系起来,为电磁学理论的研究提供了重要的基础。
2-2-5稳恒磁场基本方程因磁场也是矢量场,在第一章中,我们知道,矢量场的基本性质可由它的散度和旋度方程描述。
下面我们导出磁场的基本方程。
对于电流密度分布为J 在空间P (r )点产生的磁通密度为:3(()d 4V V Rμπ'')⨯='⎰J r RB r (2-2-20)用戴尔算符∇点乘上式两边,注意到积分是对源坐标变量,而戴尔算符是对场变量运算。
因此,我们有:0333d d d 444V V V V V V RRRμμμπππ''''⨯'⨯∇=∇'=∇'='∇⨯'⎰⎰⎰J R J RR B J又因为31()0RR∇⨯=∇⨯-∇≡R因此,()0∇=B r(2-2-21a)上式称为磁场中的高斯定理微分形式。
上式表明磁场的散度总是为零,即磁场不存在散度源。
磁场是一无散场。
磁通密度B 通过一有向面积s 的通量称为磁通,记为ψ。
则d sψ=⎰B s磁通的单位为韦伯(Wb)。
正因为此定义,B 称为磁通密度。
由散度定理,式(2-2-21a)的积分形式为:d 0s=⎰ B s (2-2-21b)上式称为磁场中的高斯定理积分形式。
上式说明,稳恒磁场通过任一封闭面的总磁通总是零,即磁场是一管量场。
或说,磁场线总是闭合的,没有起点和终点。
此称为磁通连续性原理。
取式(2-2-20)的旋度得:3(()d 4V V Rμπ'')⨯∇⨯=∇⨯'⎰J r RB r注意积分和算符∇的运算是对不同的变量,上式右边:3322(d d 441()d 4()d 4[()]d 41[()]d 4V V V V V V V V RRV R V RV R RV RRμμππμπμπμπμπ''''''')⨯'⨯∇⨯'=∇⨯'=∇⨯-'⨯∇''=∇⨯∇⨯'''=∇∇-∇'1=∇'∇-'∇'⎰⎰⎰⎰⎰⎰J r R J R J J J J J J因为R = r – r '及11RR∇=-∇'、214()Rπδ∇=-R ,我们得:300(d ()d d 4441()d d ()44V V V V V V V V RRV V R Rμμμπδπππμμμππ'''''')⨯1∇⨯'=∇-'∇''+'4(-')''=∇-∇''+∇∇'''+⎰⎰⎰⎰⎰ J r R J J r r J J J r上式右边第一项可转为封闭面积分,因电流是局限在s '包围的体积V '内,此面积分为零。
1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D BH J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。
库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z x y z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y z x y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。