恒定磁场基本方程共73页
- 格式:ppt
- 大小:5.12 MB
- 文档页数:37
第 4 章恒定磁场4.2 真空中恒定磁场的基本方程应用举例半径为 a 的无限长直导体圆柱均匀通过电流 I ,计算导体内外的B 。
解: ⑴ 电流分布具有轴对称性,选柱坐标⑵ 分析磁场的分布 zaI⑶ 沿磁感应线取B 的线积分沿ϕ 方向 ∑⎰==∙I B c02d μπρl B ρ ≤ a 时222aIJ I ρπρ==∑2022022aI a I B πρμρπρμϕ==∴ρ ≥ a 时πρμϕ20IB =II =∑例1两相交圆柱,半径同为a ,轴线相距 c ,通过强度相等方向相反的电流 I ,因而相交部分J = 0。
证明相交区域是匀强磁场。
证: ⑴ 两圆柱单独存在时,均具有轴对称性,选两套柱坐标 ⑵ 计算相交区域任取一场点P 的磁感应 22101d a Icρμ=∙⎰l B 201221101221a I a I z πμρπρμϕρa a B ⨯==22202d aIcρμ=∙⎰l B2022222022)(22aI a I z πμρπρμϕρa a B ⨯-=-=202020*******)(a Ica I a I yz z πμπμπμa c a ρρa B B B =⨯=-⨯=+=例2 O 1 O 2 Pρ1 ρ2 ⊗ ⊙ I Iz x无限大平面上均匀分布面电流J s ,求距此平面 r 处的磁感应B 。
解: ⑴ 电流分布具有平面对称性,选直角坐标。
设J s = a z J s⑵ x >0,磁场方向沿 +y 轴;x <0,磁场方向沿 –y 轴⑶ 在xOy 上选取图示矩形回路lJ l B cs 02d μ==∙⎰l B 2s0J B μ=例 0, 20>x J y sa μ0, 20<-x J y sa μ=B z xy J zz xy J zl。
2-2-5稳恒磁场基本方程因磁场也是矢量场,在第一章中,我们知道,矢量场的基本性质可由它的散度和旋度方程描述。
下面我们导出磁场的基本方程。
对于电流密度分布为J 在空间P (r )点产生的磁通密度为:3(()d 4V V Rμπ'')⨯='⎰J r RB r (2-2-20)用戴尔算符∇点乘上式两边,注意到积分是对源坐标变量,而戴尔算符是对场变量运算。
因此,我们有:0333d d d 444V V V V V V RRRμμμπππ''''⨯'⨯∇=∇'=∇'='∇⨯'⎰⎰⎰J R J RR B J又因为31()0RR∇⨯=∇⨯-∇≡R因此,()0∇=B r(2-2-21a)上式称为磁场中的高斯定理微分形式。
上式表明磁场的散度总是为零,即磁场不存在散度源。
磁场是一无散场。
磁通密度B 通过一有向面积s 的通量称为磁通,记为ψ。
则d sψ=⎰B s磁通的单位为韦伯(Wb)。
正因为此定义,B 称为磁通密度。
由散度定理,式(2-2-21a)的积分形式为:d 0s=⎰ B s (2-2-21b)上式称为磁场中的高斯定理积分形式。
上式说明,稳恒磁场通过任一封闭面的总磁通总是零,即磁场是一管量场。
或说,磁场线总是闭合的,没有起点和终点。
此称为磁通连续性原理。
取式(2-2-20)的旋度得:3(()d 4V V Rμπ'')⨯∇⨯=∇⨯'⎰J r RB r注意积分和算符∇的运算是对不同的变量,上式右边:3322(d d 441()d 4()d 4[()]d 41[()]d 4V V V V V V V V RRV R V RV R RV RRμμππμπμπμπμπ''''''')⨯'⨯∇⨯'=∇⨯'=∇⨯-'⨯∇''=∇⨯∇⨯'''=∇∇-∇'1=∇'∇-'∇'⎰⎰⎰⎰⎰⎰J r R J R J J J J J J因为R = r – r '及11RR∇=-∇'、214()Rπδ∇=-R ,我们得:300(d ()d d 4441()d d ()44V V V V V V V V RRV V R Rμμμπδπππμμμππ'''''')⨯1∇⨯'=∇-'∇''+'4(-')''=∇-∇''+∇∇'''+⎰⎰⎰⎰⎰ J r R J J r r J J J r上式右边第一项可转为封闭面积分,因电流是局限在s '包围的体积V '内,此面积分为零。