不锈钢焊缝的热影响区
- 格式:pdf
- 大小:303.20 KB
- 文档页数:5
1+x焊接模拟试题一、单选题(共56题,每题1分,共56分)1.利用碳弧气刨对低碳钢开焊接坡口时,应采用( )电源。
A、直流正接或反接B、直流正接C、交流D、直流反接正确答案:D2.二氧化碳气体预热器所使用的电压不得高于()伏。
A、24伏B、110伏C、36伏正确答案:C3.引起焊工尘肺的主要成分是()。
A、氧化铁粉尘B、臭氧C、铅蒸汽正确答案:A4.焊缝有效厚度的尺寸符号为()。
A、SB、HC、ND、L正确答案:A5.焊接过程中产生的烟尘对焊工的危害是()。
A、尘肺B、高血压C、白内障D、锰中毒正确答案:A6.温差拉伸法使焊缝两侧的金属因受热膨胀对温度较低的焊缝区进行拉伸,并且产生了拉伸塑性变形,抵消了部分焊接过程中产生的()。
A、弹性变形B、波浪变形C、拉伸变形D、压缩变形正确答案:D7.要检测焊接接头的韧性大小,应进行()试验。
A、拉伸B、硬度C、冲击D、弯曲正确答案:C8.钢材的线膨胀系数越大,则焊接时产生的()。
A、应力和变形越大B、应力大变形小C、应力和变形越小D、应力小而变形大正确答案:A9.在防止焊接变形时,刚性固定法是利用()。
A、刚度大、拘束力大、变形小的原理B、刚度大、拘束力大、变形大的原理C、刚度大、拘束力小、变形小的原理D、刚度大、拘束力小、变形大的原理正确答案:A10.下面哪一条是渗透检测的主要缺点。
()A、不能发现浅的表面缺陷B、不能用于铁磁性材料C、不能用于非金属表面D、不能发现近表面缺陷正确答案:D11.电焊钳柄必须可靠绝缘是为了()。
A、焊接电流稳定B、防止焊钳过热引起火灾C、防止焊工触电正确答案:C12.在狭窄的容器内,照明所用的电压应为()。
A、不超过380伏B、不超过220伏C、不超过36伏正确答案:C13.焊接电缆的中间接头最多不得超过()。
A、4个B、2个C、3个正确答案:B14.焊条电弧焊不可能出现那种过渡方式()。
A、细滴过渡B、喷射过渡C、短路过渡D、渣壁过渡正确答案:B15.对焊工没有损害的气体是()。
铁素体含量(δ%)对不锈钢性能的影响一、铁素体(δ)的概述--------------------1.1 不锈钢具有较好的耐蚀性、耐热性、耐低温性及良好的易成形性和优异的可焊接性,是不锈钢系列材料中重要的一类,其产量约占不锈钢总产量的60%。
不锈钢阀门主体材料几乎全部采用奥氏体不锈钢,而阀门行业对奥氏体不锈钢的认识水平,还仅涉及其化学成分和力学性能方面。
但是对一些石油化工重要工程中,都对奥氏体不锈钢焊接母材和焊缝中的铁素体含量进行了规定,正常在5%~15%。
Fe-C相图1.2 铁素体的作用具有双重性,奥氏体不锈钢母材和焊材中一定数量的铁素体对防止焊接热裂纹, 提高焊缝抗晶间腐蚀和应力腐蚀能力都有十分重要的作用, 同时,铸件中一定数量的铁素体(5%~20%)对防止铸造热裂纹,提高铸件力学性能也都是有利的。
在一些特定的环境,如高温、超低温以及选择腐蚀环境,应控制其不利作用。
为此,研究奥氏体不锈钢中铁素体的作用, 掌握铁素体的调控原理、测量和计算方法, 对研制和开发不锈钢产品具有十分重要的意义。
铁素体金相组织图二、铁素体对奥氏体钢性能的影响--------------------2.1 铁素体在奥氏体不锈钢中的作用是十分重要的,对阀门来讲,最重要的方面是对焊接性能的影响,其次是对材料耐腐蚀性能、力学性能和加工性能的影响。
不锈钢按晶体结构分为奥氏体、铁素体和马氏体。
奥氏体是面心立方晶体结构,无磁性。
铁素体和马氏体是体心立方晶体结构,有磁性。
2.1.1 其实奥氏体不锈钢,并不表明其组织结构必须是100%的奥氏体。
在不锈钢阀门和零件验收时,常可见到用磁铁来吸引被检测产品,若出现有弱磁性就以此认为产品存在质量问题,其实这是对奥氏体不锈钢的一种误解。
2.1.2 奥氏体不锈钢的焊缝区由于其特定冷却结晶条件,熔池体积很小,焊缝金属的晶体是以熔池底部及边缘,沿着母材半熔化区残留的晶体外延生长的,结晶速度起初很慢,但在焊缝中心区很快,这样焊缝金属冷却结晶是在不平衡热力学条件下快速形成的。
第49卷第1期2021年02月造船技术Zaochuan JishuVol.49No.1Feb.,2021文章编号:10003878(2021)01005705DOI:10.12225%.issn1000-387&2021.0120210113 2205双相不锈钢焊接工艺及耐腐蚀性能分析周弋琳12,陈阿静12,赵德龙12,包孔12,贾晨程12".上海振华重工(集团)股份有限公司,上海200125;2.上海海工装备智能焊接制造工程技术研究中心,上海200125)摘要:采用不同焊接工艺对2205双相不锈钢进行焊接,分析不同焊接工艺对焊接接头力学性能、微观组织及耐腐蚀性能的影响。
结果显示:在晶粒无明显长大时,焊缝及热影响区冲击韧性随奥氏体质量分数的增加而升高;采用熔化极气体保护焊(Gas Metal Arc Weldmg,GMAW)时,保护气体中加入N2可有效提高焊接接头各区域奥氏体质量分数,从而提高焊接接头力学性能及耐腐蚀性能;2205双相不锈钢母材及焊缝腐蚀速率均明显随腐蚀液质量分数的升高而增加。
优化双相不锈钢焊接工艺参数,保证其焊接接头具有良好的综合性能,对于该类材料构件及产品的制造、推广及使用意义重大。
关键词:2205双相不锈钢;GMAW;焊接工艺;耐腐蚀性能中图分类号:U671.83文献标志码:AAnalysis of Welding Technology and Corrosion Resistanceof2205Duplex Stainless SteelZHOU Yiln1-2,CHENAjing2,ZHAO Delong2,BAOKong2,JIA Chencheng12(1.Shanghai Zhenhua Heavy Industries Co.,Ltd.,Shanghai200125,China; 2.Shanghai EngineeringResearch Center of Marine Equipment Intelligent Welding,Shanghai200125,China)Abstract:2205duplex stainless steel is welded with the different welding technologies,and the influences ofdi f erent weldingtechnologiesonthe mechanicalproperties,microstructure,andcorrosionresistanceofwelding joint are analyzed.The results show that:when the grain does not grow significantly,the impacttoughnessofweldandheat-a f ectedzoneincreaseswiththeincreaseofaustenitemassfraction;whentheGasMetal Arc Welding(GMAW)is used,adding N2into the protective gas can e f ectively increase the austenitemassfractionina l areasofweldingjoint,soastoimprovethemechanicalpropertiesandcorrosionresistanceofweldingjoint;thecorrosionrateofbasematerialandweldof2205duplexstainlesssteelincreasesobviouslywiththeincreaseofcorrosionliquidmassfraction.Itisofgreatsignificanceforthemanufacture,promotionanduseofcomponentsandproductsof2205duplexstainlesssteeltooptimizeitsweldingtechnologyparametersandtoensureitsweldingjointagoodcomprehensiveperformance.Key words:2205duplex stainless steel;GMAW;welding technology;corrosion resistance0引言2205双相不锈钢因具有较高强度、韧性、耐腐蚀性能等而被广泛应用于造船、造纸、石油化工、海工装备制造、海水与废水处理等行业,是目前应用最广泛的双相不锈钢口双相不锈钢中铁素体相"相)与奥氏体相"相)约各占一半,以充分利用奥氏体不锈钢的优良韧性和焊接性,以及铁素体不锈钢的高强度和优良的耐腐蚀性3。
热影响区的组织分布(1)完全淬火区:焊接时热影响区处于AC3以上的区域,由于这类钢的淬硬倾向较大,故焊后得到淬火组织(马氏体)。
在靠近焊缝附近(相当于低碳钢的过热区),由于晶粒严重长大,故得到粗大的马氏体,而相当于正火区的部位得到细小的马氏体。
根据冷却速度和线能量的不同,还可能出现贝氏体,从而形成了与马氏体共存的混合组织。
这个区在组织特征上都是属同一类型(马氏体),只是粗细不同,因此统称为完全淬火区。
(2)不完全淬火区:母材被加热到AC1~AC3温度之间的热影响区,在快速加热条件下,铁素体很少溶入奥氏体,而珠光体、贝氏体、索氏体等转变为奥氏体。
在随后快冷时,奥氏体转变为马氏体。
原铁素体保持不变,并有不同程度的长大,最后形成马氏体-铁素体的组织,故称不完全淬火区。
如含碳量和合金元素含量不高或冷却速度较小时,也可能出现索氏体和体素体。
如果母材在焊前是调质状态,那么焊接热影区的组织,除在上述的完全淬火和不完全淬火区之外,还可能发生不同程度的回火处理,称为回火区(低于AC1 以下的区域)。
总括以上,金属在焊接热循环的作用下,热影响区的组织分布是不均匀的。
熔合区和过热区出现了严重的晶粒粗化,是整个焊接接头的薄弱地带。
对于含碳高、合金元素较多、淬硬倾向较大的钢种,还出现淬火组织马氏体,降低塑性和韧性,因而易于产生裂纹。
在当今社会生产中,金属材料的应用是十分广泛的,尤其是钢铁材料,在工业。
农业。
交通运输。
建筑以及国防等各方面都离不开他。
随着现代化工农业以及科学技术的发展,人们对金属材料的性能要求越来越高。
为满足这一点,一般可以采取两种方法:研制新材料和对金属材料进行热处理。
后者是最广泛,最常用的方法。
热处理是一种综合工艺。
热处理工艺学就是研究这种综合工艺的原理及规律的一门学科。
热处理工艺在我国已有悠久的历史,早在商代就已经有了经过再结晶退火的金箔饰物,在洛阳出土的战国时代的铁锛,系由白口铁脱碳退火制成。
在战国时代燕都遗址出土的大量兵器,向人们展示了在当时钢件已经采用了淬火,正火,渗碳等工艺。
2205不锈钢的焊接工艺2205不锈钢是一种新型的不锈钢材料,因为它所具有的优异的性能而被广大用户所喜爱,它在应用领域上不断地摸索前进,使得已经在其同行业有了一定的地位,既如此,它的质量问题就成为了我们比较关注的问题,质量问题的考量可以从两面入手,一个是其材质问题,另一个就是其焊接工艺方面,那么今天阐述一下其焊接有哪些工艺。
1)焊前准备采用机加工制备试板坡口,用不锈钢专用砂轮片打磨坡口及坡口两侧各30mm范围,并用丙酮清洗,以除去氧化膜、油污。
2)焊接方法一般的焊接方法,如焊条电弧焊、钨极氩弧焊和熔化极气体保护焊埋弧焊等,都可用于双相不锈钢的焊接。
3)焊材的选择对于焊条电弧焊,根据耐腐蚀性,接头韧性的要求即焊接位置,可选用酸性或碱性焊条。
4)焊接工艺参数的选择焊接线能量太大或太小都不好,一般控制在0.5~2.5kJ/cm范围,其具体大小要根据焊件厚度选择。
5)焊接熔池及背面的保护气体保护焊时保护气体中加氮可以提高焊缝的耐蚀性。
有效的背面气体保护是保证焊接质量的前提,保护气体的纯度应满足工艺要求,应采取有效的背面保护工装,开始焊接时要对焊缝背面的氧含量进行检测,满足工艺要求后才能开始焊接。
6)定位焊缝定位焊缝焊接时,如果长度过短,焊接未建立起平衡过程即结束,焊缝冷却会很快,可能导致铁素体含量过高、低韧性并因氮化物析出而降低耐腐蚀性能。
因此,如采用定位焊,对定位焊缝的最短长度应进行规定,且应采用较大热输入规范参数。
7)焊接过程材料的保护材料表面的弧击和起弧,是一个瞬间的高温过程,冷却速度很快,表面显微组织中铁素体含量很高,这种组织对裂纹和腐蚀很敏感,应尽力避免,如果产生必须用细砂轮打磨去除。
现场焊接过程中材料的保护非常重要,应避免碳钢、铜、低熔点金属或其它杂质对不锈钢的污染,可能情况下,不锈钢和碳钢管应分开存放和焊接。
焊接和切割过程中应采取措施防止飞溅、弧击、渗碳、局部过热等。
以上简单的介绍不知道您了解了没有,焊接工艺的要求还得需要焊接人员具有更加专业的焊接经验和知识才可以,在焊接的过程中,一定要对每个方面都要特别关注,以免在焊接中出现不必要的问题。
2205双相不锈钢焊接和焊后热处理⼯艺2205双相不锈钢焊接和焊后热处理⼯艺研究摘要:采⽤了等离⼦弧焊(PAW)打底+钨极氩弧焊(TIG)盖⾯和等离⼦弧焊(PAW)打底+熔化极氩弧焊(MIG)盖⾯两种焊接⼯艺焊接2205双相不锈钢,并对焊接接头进⾏了固溶处理,对采⽤两种焊接⼯艺的焊件进⾏⾦相组织、铁素体-奥⽒体两相⽐例、⼒学性能以及耐点腐蚀性检测。
结果表明,两种焊接⼯艺都可以保证焊接接头的各项性能均能满⾜技术要求,TIG焊盖⾯的焊接接头铁素体含量低于MIG 焊盖⾯,且冲击韧性也于优于MIG焊盖⾯,⽽MIG焊盖⾯的焊接接头的耐点腐蚀性能优于TIG焊盖⾯。
关键词:2205双相不锈钢TIG焊MIG焊⼒学性能点腐蚀⼀、引⾔双相不锈钢是由奥⽒体和铁素体两相组成,当两相⽐例约为50%时,双相不锈钢将奥⽒体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所有的较⾼强度和耐氯化物应⼒腐蚀性能结合在⼀起,使其兼具奥⽒体不锈钢和铁素体不锈钢的优点。
2205双相不锈钢是20世纪70年代⾸先由瑞典研制成功,材料牌号为SAF2205,属于第⼆代双相不锈钢。
中国在80年代初开始研究相当SAF2205的00Cr22Ni5Mo3N双相不锈钢,它是⼀种典型的含N、超低碳、双相铁素体—奥⽒体不锈钢,它具有较⾼的屈服强度(为奥⽒体不锈钢的⼆倍)及良好的塑性,有良好的低温冲击性能,优良的耐应⼒腐蚀、晶间腐蚀、点腐蚀和缝隙腐蚀性能;与奥⽒体不锈钢相⽐,具有导热系数⼤、线膨胀系数⼩、可焊性好、热裂倾向⼩、钢中含镍量较⼩、价格相对便宜等优点,使其⼴泛应⽤于化⼯、⽯油能源及海洋等领域,是⽬前应⽤最普遍的双相不锈钢材料。
本实验分别采⽤了两种不同焊接⽅法进⾏对⽐,在焊后对焊接接送进⾏了热处理,研究了焊接和热影响区组织及性能变化和奥⽒体-铁素体相⽐例对其的影响。
⼆、实验材料和实验⽅法1、实验材料实验采⽤太原钢铁公司⽣的2205双相不锈钢,其化学成分和⼒学性能如表1和表2所⽰。
2507双相不锈钢模拟焊接热影响区的组织与性能贾元伟【摘要】采用热模拟试验机研究了最高加热温度(峰值温度)和热输入量对2507双相不锈钢模拟焊接热影响区显微组织和冲击韧度的影响规律.结果表明:固定热输入量,随着峰值温度的升高,模拟焊接热影响区的铁素体含量增加,冲击韧度降低;固定峰值温度,随着热输入量的增加,模拟焊接热影响区的铁素体含量降低,冲击韧度增加.【期刊名称】《理化检验-物理分册》【年(卷),期】2014(050)006【总页数】4页(P417-420)【关键词】2507双相不锈钢;峰值温度;热输入量;模拟焊接;显微组织;冲击韧度【作者】贾元伟【作者单位】山西太钢不锈钢股份有限公司技术中心,太原030003【正文语种】中文【中图分类】TG401由于双相不锈钢(DSS)兼有奥氏体和铁素体双重特点,具有良好的耐多种介质腐蚀的性能和较高的力学性能,应用越来越广泛,尤其近年来在石油化工和海洋工程等制造领域推广很快。
在这些制造领域,最常用的加工手段即为焊接,焊接过程中焊接热循环会对基体的组织和性能产生很大的影响,特别是焊接热影响区的性能。
近年来众多研究人员采用热模拟试验机对2205双相不锈钢进行了焊接热模拟研究,深入研究了焊接热模拟工艺对2205不锈钢焊接热影响区组织变化、韧性及耐腐蚀性的影响[1-6]。
然而目前关于2507超级双相不锈钢该方面的研究还较少,为此笔者采用热模拟法模拟焊接热循环过程,研究了2507双相不锈钢的模拟焊接热影响区冲击韧度和显微组织的关系,探讨了模拟峰值温度和热输入量对模拟焊接热影响区显微组织和冲击韧度的影响。
1 试验材料与试验方法1.1 试验材料模拟试验用2507超级双相不锈钢的化学成分(质量分数/%)为:0.021C,0.65Si,1.06 Mn,0.018P,0.005S,25.25Cr,7.08 Ni,3.89 Mo,0.25 N,余量为Fe。
材料经固溶处理,在理想状态下其显微组织中的铁素体和奥氏体含量应各占约50%(体积分数)。
腐蚀与防护文章编号:1003 1545(2007)01 0044 03不锈钢管道焊缝区域的海水腐蚀性能车俊铁1,2,黄俊华2(1.北京石油化工学院,北京 102617;2.中国石油大学(北京),北京 102249)摘 要:通过化学成分分析、金相试验和腐蚀试验,分析了不锈钢管道焊缝及附近区域耐海水腐蚀的特点,揭示了该焊缝及附近区域的海水腐蚀规律,并总结出该焊缝及附近区域金相组织变化对耐海水腐蚀性能的影响。
关键词:海水腐蚀;焊缝;金相组织;夹杂物中图分类号:T G1 文献标识码:A收稿日期:2006 09 07在通常情况下,海水对金属管道有强烈的腐蚀作用,一般采用特殊不锈钢管道施工,但在管道焊缝及其附近区域腐蚀最严重,给实际生产带来巨大安全隐患和经济损失。
为解决不锈钢管道焊缝及其附近区域耐海水腐蚀性差的问题,本文进行了针对性试验研究。
1 试验方法试验管材为00Cr18Ni14Mo2Cu2奥氏体不锈钢,焊接材料为A032奥氏体不锈钢焊条,采用普通电弧手工焊接方法施焊,焊后未热处理。
对焊后试样进行能谱分析和定量化学成分分析、金相(金相夹杂物和金相组织)分析。
用SCE(汞/甘汞 饱和KCl)电极作为参比电极来衡量工作电极的电位,辅助电极为暗黑铂电极,采用407合成胶密封试样。
电化学试验介质溶液的组成为:4.35%NaCl 水溶液(模拟海水成分),温度为25 。
试样有效工作面积约0.5cm 2,扫描速率为2mV/s 。
分别取母材区(BMZ)、焊缝区(WZ)和影响区(HAZ)进行试验。
2 结果分析2.1 成分分析母材区、热影响区和焊缝区的能谱峰图如图1~3所示,分析结果如表1所示。
表1 化学成分1)(w )%部位Si M n N i Cr M o Cu Fe 焊缝区0.35极少14.1317.74 1.32极少其余热影响区0.350.8113.2915.90 1.60 1.48其余母材0.21 1.0312.6516.38 1.69 1.87其余G B/T 14976-200200Cr18Ni14M o2Cu21.002.0012.00~16.0017.00~19.001.2~2.751.00~2.50其余注1):C 、S 、P 、Si 等微量元素均符合GB/T 14976-2002!流体输送用不锈钢无缝钢管∀对00Cr18Ni14Mo2Cu2母材的要求,在焊缝区和影响区C 、S 、P 等微量元素基本无变化。
不锈钢焊缝热影响区出现裂纹的原因引言:不锈钢作为一种常见的材料,广泛应用于许多领域,如航空航天、化工、建筑等。
在焊接过程中,常常会出现焊缝热影响区裂纹的问题,这给不锈钢的使用和维护带来了困扰。
本文将探讨不锈钢焊缝热影响区出现裂纹的原因,并提出相应的解决方法。
一、热影响区的定义和特点不锈钢焊缝热影响区是指在焊接过程中,焊缝周围的区域受到热影响而发生微结构和性能变化的区域。
热影响区具有以下特点:1. 高温:焊接过程中,热影响区温度较高,一般处于临界温度以上。
高温会引起不锈钢晶粒的长大和相变,从而导致热影响区的性能变化。
2. 快速冷却:焊接结束后,热影响区会经历快速冷却过程,冷却速度较快。
快速冷却会导致不锈钢晶粒的细化和残余应力的产生,进而引发裂纹的形成。
二、裂纹形成的原因1. 残余应力:焊接过程中,由于热量的不均匀分布和快速冷却,热影响区内会形成残余应力。
残余应力是裂纹形成的主要原因之一。
当残余应力超过材料的强度极限时,就会导致裂纹的形成。
2. 晶粒长大和相变:高温会引起不锈钢晶粒的长大和相变,这会导致晶界的断裂和裂纹的生成。
尤其是在焊接过程中,由于热量集中和焊接速度较快,晶粒的长大和相变更加明显,容易引发裂纹。
3. 焊接变形:焊接过程中,由于热膨胀和热收缩的影响,不锈钢焊缝周围会发生变形。
焊接变形会导致局部应力集中,从而增加了裂纹的形成概率。
三、预防和解决方法为了预防和解决不锈钢焊缝热影响区裂纹的问题,可以采取以下方法:1. 控制焊接参数:合理控制焊接电流、电压、焊接速度等参数,避免热输入过大或过小,减少热影响区的温度梯度和冷却速度,从而降低裂纹的形成概率。
2. 采用适合的焊接工艺:选择合适的焊接工艺,如预热、后热处理等,可以改变热影响区的组织和性能,减少裂纹的产生。
预热可以提高材料的塑性和韧性,后热处理可以消除残余应力。
3. 使用适当的填充材料:选择合适的填充材料,可以改变热影响区的组织和性能,提高焊缝的抗裂性能。