焊接热影响区的组织和性能变化
- 格式:ppt
- 大小:2.56 MB
- 文档页数:38
第五章焊接热影响区的组织和性能焊接分为三大类:熔化焊、压力焊和钎焊。
其中熔化焊是最常见最广泛的焊接方法。
而本书讨论的焊接冶金主要是以熔化焊为基础进行讨论的。
所谓熔化焊是采用一种高温热源使两种同质或非同质的材料利用原子间或分子间的分散与聚合而形成一个整体的过程。
这个热源贯穿于焊接过程的始终:一部分热量用于加热焊件和母材,一部分用于热损失(飞溅、周围介质等)。
用于加热母材和焊材的热功率称为有效功率,其实这部分热量:一部分用于熔化金属形成焊缝,另一部分用于热传导而流失于母材形成HAZ (包含熔合线)。
HAZ:熔焊时在集中热源的作用下,焊缝两侧发生组织和性能变化的区域。
焊接接头:焊缝和和热影响区p161 图4-1焊接热影响区示意图前面讨论焊缝的合金化,焊缝金属的脱S、脱O、脱P、H及晶粒的细化等,均是如何控制焊缝的质量,主要是焊缝区的问题。
由于早些年代里,制造焊接结构所采用的钢种是低碳钢,焊缝是至关重要的环节。
HAZ一般不会出现什么问题,但随着科学技术和生产规模的发展,各种高温、耐压、耐蚀、低温容器、深水潜艇、宇航设备以及核电站锅炉、管道等不断建造,各种高强钢、高合金钢以及某些特种材料(Al合金、钛合金、镍基合金、复合材料和陶瓷等)也得到广泛的应用,这种情况下,焊接的质量不仅仅取决于焊缝,同时取决于HAZ,有时HAZ存在的问题比起焊缝更为复杂。
如:如今大型水电站,尤其高水头电站(包括抽水蓄能电站)的建造要求提供流量大、承压高的输水压力管道,如果采用普通钢材,必须增加管壁的厚度,无疑给压力钢管的制造、运输和安装带来极大的困难。
随之发展起来的适用于压力钢管的焊接结构用高强钢,如700MPa,800Mpa级钢具有很高的屈服强度和抗拉强度,同普通钢相比,可以大大减少压力钢管壁的厚度,克服了普通钢的局限性,(WEL—TEN80 WCF—62(80))它具有良好的低温冲击韧性也为钢管的可靠运行提供了保证,但它焊接时,易出现HAZ软化(投影)或产生裂纹。
焊接热影响区显微组织及性能分析当我们进行焊接工艺时,焊接热影响区(HAZ)往往会被忽略。
这个区域受到了高温,快速冷却和热应力的影响,导致了焊接材料性能的改变。
因此,对焊接热影响区的显微组织及性能分析至关重要,以便确保焊接后材料的质量和可靠性。
1. 焊接热影响区的显微组织分析焊接热影响区受到的热影响主要包括多种因素,例如熔池温度、加热速率、冷却速率和焊接残余应力。
这导致了焊接热影响区显微组织的改变。
在焊接中,焊接热影响区可以分为三个区域:粗晶区、细晶区和回火区。
(1) 粗晶区:在这个区域,材料暴露在高温下的时间更长,导致了晶粒的长大。
这进一步导致晶粒间的间隔增加,因此这个区域的强度和韧性都会下降。
(2) 细晶区:这个区域中的晶粒被迅速加热并迅速冷却,导致了晶粒尺寸的减小。
然而,这个区域的强度和韧性仍然会下降。
因为这个区域,晶界比粗晶区更脆弱。
(3) 回火区:当焊接完成后,渐进升温,晶格结构变松弛,导致材料中的应力逐渐减小。
这个区域的显微组织与原始材料相似,因为它经历了温度和压力的缓慢升高。
2. 焊接热影响区的性能分析焊接热影响区的性能分析往往涉及到强度和韧性这两个方面。
焊接热影响区不仅影响焊接点的性能,还对整个结构的性能产生影响。
(1) 焊接强度:焊接热影响区的强度是由显微组织和残余应力共同决定的。
因此,在评估焊接强度时,必须对热影响区进行适当的检测。
(2) 焊接韧性:焊接热影响区的韧性能够反应焊接后材料的冲击韧性和裂纹扩展性。
由于热影响区的强度下降,它的韧性也会受到影响,并可能导致焊接点的脆性断裂。
3. 如何提高焊接后材料的性能为了提高焊接点的性能,需要在选择焊接材料、焊接工艺和焊接参数时进行仔细的选择和控制。
同时,还需要进行适当的后处理,例如回火和淬火,以降低焊接热影响区的残余应力和提高焊接点的强度和韧性。
在焊接材料的选择时,必须选择适用于特定应用的焊接材料。
它的成分、热特性和机械特性等方面必须与基础材料相匹配。
焊接冶金基础三、焊接热影响区的组织和性能焊接热影响区焊接接头各部位的加热峰值温度分布如图10所示。
加热时各部位组织变化情况是:加热温度超过Ac3开始发生α-γ的转变,在且Ac1~Ac3之间转变继进行,到达Ac3转变完了,温度继续升高达1100℃时,晶粒急剧长大,热影响区各点的组织变化首先取决于峰值温度Tmax不同焊接方法热影响区的平均尺寸如表2所示。
按照Tmax的不同,淬硬倾向小的低碳钢和淬硬倾向大的钢种热影响区的组织可分为以下几个区。
表2 不同焊接方法热影响区的平均尺寸1.低碳钢接头的热影响区组织和性能(1)熔合区焊缝金属和母材之间的过渡区,即半熔化区和未混合区,称为熔合区,其温度处于固相线与液相线宰。
熔合区在化学成分和组织性能上都有较大的不均匀性,在接近母材一侧的金属组织是过热组织,塑性差。
同时又因温度梯度大,所以熔合区是很窄的,但对强度、塑性都有很大的影响。
在许多情况下,熔合区是产生裂纹、局部脆性破坏的发源地。
(2)过热区此区段处于1100℃到固相线温度的高温范围。
在这样高的温度下,奥氏体晶粒严重长大,尤其在1300℃以上时晶粒十分粗大,冷却后就获得粗大的过热组织(气焊时还可能得到魏氏组织),使材料的塑性大大降低,特别冲击韧性的影响尤为显著(通常要降低20%~30%)。
如果焊件的刚性很大,则常在此区产生裂纹。
所以,过热区是焊接接头中最危险的区段。
(3)正火区(相变重结晶区)金属被加热到止Ac3以上稍高的温度下,铁素体和珠光体全部转变为奥氏体。
由于焊接时加热速度很快,在高温下停留时间又短,所以奥氏体晶粒还未十分长大。
故该区空冷下来后,得到均匀细小的铁素体和珠光体组织,相当于热处理中的正火组织,是接头中综合力学性能最好的区段。
此区的温度范围约在Ac3~1000℃之间。
(4)不完全重结晶区此区段是温度范围在Ac1~Ac3之间的热影响区。
温度稍高于Ac1是地,首先珠光体转变为奥氏体,随温度的升高,在Ac1~Ac3温度范围内只有部分铁素体溶入奥氏体,其余部分铁素体则保留下来。
5焊接热影响区的组织和性能焊接热影响区(Heat Affected Zone, HAZ)是指在焊接过程中,未被完全熔化但受到高温加热的区域。
在焊接过程中,高温会引起HAZ的组织和性能发生变化,这可能会对焊接接头的性能和可靠性产生重要影响。
本文将讨论HAZ的组织和性能的变化,并重点介绍几个重要的影响因素。
首先,HAZ的组织变化是由高温引起的。
在焊接过程中,焊接电弧和熔化池的高温作用下,HAZ的温度会迅速升高,达到几百摄氏度甚至更高的温度。
高温会导致HAZ中的晶粒长大、晶格变形和相结构改变。
通常情况下,HAZ中的晶粒比母材中的晶粒要大,且晶格常常发生变形。
晶粒尺寸的增加和晶格变形会导致材料硬度的提高,并可能降低材料的韧性。
其次,HAZ的性能变化是由组织变化引起的。
HAZ中的晶粒长大和晶格变形会导致材料的硬度提高,但与此同时,硬度的增加也会导致韧性的降低。
在一些情况下,HAZ还可能出现脆性相的形成,这会极大地降低焊接接头的可靠性。
此外,HAZ还可能出现裂纹和变形等缺陷,这也会对焊接接头的性能产生严重影响。
因此,在焊接接头设计和制造过程中,必须对HAZ的组织和性能进行充分考虑,以确保焊接接头的质量和可靠性。
HAZ的组织和性能变化受多种因素影响,以下列举几个重要因素:1.焊接热输入:焊接热输入是指在单位长度或单位面积上输送到工件中的热量。
热输入的大小与焊接电压、电流和焊接速度等参数有关。
过高或过低的热输入都会导致HAZ中的晶粒长大和晶格变形,从而影响HAZ的性能。
2.材料的化学成分和微观结构:不同材料的化学成分和微观结构会对HAZ的组织和性能产生重要影响。
一些合金元素的存在可以改变晶粒的生长速率和晶格的变形行为。
此外,材料的粗晶相和弥散相等局部微观结构也会对HAZ的性能产生重要影响。
3.冷却速率:冷却速率是指焊接过程中HAZ冷却的速度。
冷却速率的快慢会影响晶粒生长和晶格变形行为。
通常情况下,快速冷却会导致HAZ 中的晶粒更细小,且硬度更高。