信号与系统实验-电话拨号音的合成与分解
- 格式:doc
- 大小:39.00 KB
- 文档页数:9
声音的奇妙合成与分解实验实验目的:
通过实验观察声音的合成和分解过程,了解声音的本质和特性。
实验材料:
1.计算机音频软件(如Audacity)
2.音频采集卡(可选)
3.扬声器或耳机
4.麦克风
实验步骤:
1.声音的合成
(1)打开音频软件,在音频轨道上录制两段清晰的声音样本,并将它们单独保存。
(2)选择一段音频,将其复制到另一个轨道上,调节两个轨道的音量大小,使它们相互重叠。
此时发现,两段声音通过叠加产生了新的声音,这就是声音的合成过程。
2.声音的分解
(1)将合成的声音和原始声音一起保存,重新打开软件,选择原始的声音轨道,并使用谱分析工具观察其频谱特征。
(2)选定频谱上的一段区间,将其复制到另一个轨道上,并使用滤
波器将这一段区间从原始音频轨道上剔除。
此时,认为分离出了原始
声音中的一段频率区间,即声音的分解过程。
实验结果:
通过实验结果可以发现,声音的合成和分解都是基于声音波形的
基础上进行的。
声音的合成是将两段声音波形相加形成新的波形;声
音的分解则是通过谱分析将一个复杂波形分解成多个简单波形的过程。
实验提示:
在进行合成和分解实验时,注意保持音频清晰,尽量避免外界噪
音的干扰。
此外,实验中的操作需要耐心和细心,需要多次尝试和调整,才能得到合适的实验结果。
深圳大学实验报告课程名称:信号与系统
实验项目名称:信号的分解与合成实验学院:信息工程
专业:电子信息
指导教师:
报告人:学号班级: 4
实验时间:2016-05- 14
实验报告提交时间:2016-05-14
教务部制
送入Y轴,示波器采用X-Y方式显示,观察李沙育图形。
90、1800时,波形分别如图2-2-3当基波与三次谐波相位差为00(即过零点重合)、0
所示。
相位差=0º相位差=90º相位差=180º
图4-3 基波与三次谐波相位的观察
以上是三次谐波与基波产生的典型的李沙育图,通过图形上下端及两旁的波峰个数,确定频率比,即3:1,实际上可用同样的方法观察五次谐波与基波的相移和频率比,其应约为5:1。
实验内容:
1、观察信号分解的过程及信号中所包含的各次谐波。
2、观察由各次谐波合成的信号。
数据处理:
基波与三次谐波的相位图、幅度比
基波与五次谐波的相位与幅度比
基波与七次谐波的相位、幅度比
基波与各次谐波的合成图形
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。
知识就昱力量MATLAB 电话拨号音的合成与识别1. 实验目的1.本实验内容基于对电话通信系统中拨号音合成与识别的仿真实现。
主要涉及到电话拨号音合成的基本原 理及识别的主要方法,利用 MATLAB 软件以及FFT 算法实现对电话通信系统中拨号音的合成与识别。
并进一步利用 MATLAB 中的图形用户界面 GUI 制作简单直观的模拟界面。
使其对电话通信系统拨号音 的合成与识别有个基本的了解。
2. 能够利用矩阵不同的基频合成 0 — 9不同按键的拨号音,并能够对不同的拨号音加以正确的识别,实 现由拨号音解析出电话号码的过程。
进一步利用 GUI 做出简单的图形操作界面。
要求界面清楚,画面简洁,易于理解,操作简单。
从而实现对电话拨号音系统的简单的实验仿真。
2.实验原理 1. DTMF 信号的组成双音多频 DTMF ( Dual Tone Multi-Frequency )信号,是用两个特定的单音频率信号的组合来代表数 字或功能。
在DTMF 电话机中有16个按键,其中10个数字键0 — 9, 6个功能键*、#、A 、D 。
其中12个按键是我们比较熟悉的按键,另外由第4列确定的按键作为保留,作为功能 1209Hz 、 1336Hz 、 1477H:、 1633Hz 高频群。
从低频群和高频群任意各抽出一种频率进行组合, 共有16种组合,代表16种不同的数字键或功能,每个按键唯一地由一组行频和列频组成,如表 示。
V4 Z Z.+DTMF 的组合功能3. 实验步骤1. DTMF 信号的产生合成现在将对上节制作的图形电话拨号面板上的各控件单位的动作和变化进行设置, 即对tu1.m 文件进行编辑。
其主要的功能是使对应的按键,按照表1的对应关系产生相应的拨号音,完成对应行频及列频的叠加输岀。
此外,对于图形界面的需要,还要使按键的号码数字显示在拨号显示窗口中。
键留为今后他用。
根据CCITT 建议,国际上采用 697Hz 、770Hz 、 852Hz 、 941Hz 低频群及■I知识就昱力量鉴于CCITT对DTMF信号规定的指标,这里每个数字信号取1000个采样点模拟按键信号,并且每两个数字之间用100个0来表示间隔来模拟静音。
合肥学院课程设计报告题目:_ 电话通信系统中信号音的产生与实现系别:__ 电子信息与电气工程系 _ _ 专业:___ 通信工程___ ______ _班级:____ _ ______2013年 12月 09日《现代通信技术课程设计》课程设计任务书电话通信系统中信号音的产生及其实现摘要:随着社会的飞速发展,人与人之间的交流日益密切,电话通信系统运用日趋广泛,每时每刻都充满了我们的生活,给我们的生活提供了方便,带来了不一样的体验和色彩。
在电话通信系统中,各种不同的信号音对我们的通信状态,有很大的提示和指引作用。
本设计中我们通过运用所学的FPGA的相关知识,基于VHDL语言进行编程,借助Quartus软件和GW-48实验开发平台设计实现拨号音,回铃音、忙音、通知音,这四种不同的信号音,并进行验证。
关键词:信号音;VHDL语言;FPGA ;Quartus2 ;实现;正文:一、设计目的1.掌握CPLD可编程器件的编程和下载方法。
2.熟悉用CPLD可编程器件产生程控交换中信令信号的方法。
3.从设计中掌握一些基本技巧,提高自己动手能力和发现问题解决问题的能力。
4.通过设计完成一个小项目,培养团队合作能力,并检验我们四年来所学的专业知识。
二、设计要求利用可编程器件CPLD对系统的全局时钟信号进行分频,产生程控交换系统中电话交换的4种信号音:拨号音:连续发送的500Hz信号。
回铃音:1秒通,4秒断的5秒断续的500Hz信号。
忙音:0.35秒通,0.35秒断的0.7秒断续的500Hz信号。
振铃信号(铃流):以0.2秒通,0.2秒断,以0.2秒通,0.6秒断的1.2秒断续方式发送。
通过软件编程及仿真,正确实现以上四种信号音的发生,最终下载,并用示波器观察波形,和拨数字键调出不同信号音听扬声器发出声音是否正确来验证程序及产生信号音的正确性。
三、设计原理设计中我们用到的开发系统主频为50MHz,因设计要求产生500Hz及25Hz 的信号音,故我们首先考虑把50MHz的主频进行分频。
信号的分解与合成实验报告广州大学学生实验报告学院日期:2014年5月20专业: 年级: 成绩:姓名: 学号:实验课程名称:信号与系统实验指导老师:实验项目名称:滤波器的频响特性测定一、实验目的1、进一步掌握周期信号的傅里叶级数。
2、用同时分析法观测锯齿波的频谱。
3、全面了解信号分解与合成的原理。
4、掌握带通滤波器的有关特性测试方法及其选频作用。
5、掌握不同频率的正弦波相位差是否为零的鉴别和测试方法(李沙育图形法)。
二、实验原理任何电信号都是由各种不同频率、幅度和初相的正弦波叠加而成的。
对周期信号由它的傅里叶级数展开式可知,各次谐波为基波频率的整数倍。
而非周期信号包含了从零到无穷大的所有频率成分,每一频率成分的幅度均趋向无限小,但其相对大小是不同的。
通过一个选频网络可以将信号中所包含的某一频率成分提取出来。
对周期信号的分解,可以采用性能较佳的有源带通滤波器作为选频网络。
若周期信号的角频率,则用作选频网络的,种有源带通滤波器的输出频率分别是、Wo,1Wo,2Wo,。
NWo,从每一有源带通滤波器的输出端可2wo、3Wo、4Wo、5Wo( 以用示波器观察到相应谐波频率的正弦波,这些正弦波即为周期信号的各次谐波。
把分离出来的各次谐波重新加在一起,这个过程称为信号的合成。
本实验中,将被测锯齿波信号加到分别调谐于其基波和各次谐波频率的一系列有源带通滤波器电路上。
从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。
本实验所用的被测周期信号是,,,,,的锯齿波,而用作选频网络的,种有源带通滤波器的输出频率分别是,,,,,、,,,Hz、300Hz、 400Hz、500Hz、600Hz、700Hz,因而能从各有源带通滤波器的两端观察到基波和各次谐波。
奇次谐波的相位与基波同相,而偶次谐波的相位与基波反相。
各次谐波之间的相位差可以用李沙育图形法测量.。
利用运算放大器可以制成加法器,通过加法器将锯齿波分解出来的各次谐波相叠加,可以重新获得锯齿波。
实验五信号的分解与合成基波二次谐波
三次谐波四次谐波
五次谐波信号合成
调整后信号合成三次谐波与基波相位差
五次谐波与基波相位差
通过观察和示波器测量,可以发现各次谐波的幅值符合方波的傅利叶级数各项系数之比,此时,基波、三次谐波、五次谐波合成的信号最贴近原方波信号。
基波二次谐波
三次谐波四次谐波
五次谐波信号合成
三次谐波与基波相位差五次谐波与基波相位差
数各项系数之比,此时,基波、三次谐波、五次谐波合成的信号最贴近原三角波信号
2.分别绘出三角波基波、三次谐波、五次谐波及合成的波形在同一坐标
平面的图形。
3.总结信号的分解与合成原理。
信号分解:采用性能较好的有源带通滤波器作为选频网络,选频网络的输出频率调整到被分解信号的基波、二次谐波、三次谐波四次、五次谐波,分别将电信号中所包含的该谐波频率成份提取出来。
信号合成:分解后的各次谐波信号分别输送到加法器中合成即可。
但要调整各次谐波的幅度和相位符合傅立叶分解级数中各次谐波间的幅度相位的比例关系,才能合成出效果良好的信号。
4. 总结方波、三角波所含频谱成分的差异。
等幅三角波与方波,傅立叶分解后,同次谐波相比,三角波信号分量幅度小。
方波与三角波相比,含有的高次谐波更丰富。
信号与系统中信号分解与合成实验报告信号与系统实验报告非正弦周期信号的分解与合成专业:班级:姓名:学号:用同时分析法观测50Hz非正弦周期信号的分解与合成用同时分析法观测50Hz 非正弦周期信号的分解与合成一、实验目的1、用同时分析法观测50Hz非正弦周期信号的频谱,并与其傅立叶级数各项的频率与系数作比较。
2、观测基波和其谐波的合成。
二、实验设备1、信号与系统实验箱:THKSS,A型或THKSS,B型或THKSS,C型。
2、双踪示波器,数字万用表。
三、实验原理1、一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、…、n等倍数分别称二次、三次、四次、…、n次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。
2、不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。
3、一个非正弦周期函数可用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示方波频谱图各种不同波形的傅立叶级数表达式1、方波4u111 mu(t),(sin,t,sin3,t,sin5,t,sin7,t,,,,),3572、三角波8U11 mu(t),(sin,t,sin3,t,sin5,t,,,,)2,9253、半波2U1,11 mu(t),(,sin,t,cos,t,cos4,t,,,,),243154、全波4U1111 mu(t),(,cos2,t,cos4,t,cos6,t,,,,),2315355、矩形波,U2U ,,12,,13,,mmu(t),,(sincos,t,sincos2,t,sincos3,t,,,,)T,T2T3T实验装置的结构如下图所示信号分解与合成实验装置结构框图,图中LPF为低通滤波器,可分解出非正弦周期函数的直流分量。
信号的分解与合成实验-回复
信号的分解与合成实验是一种通过将信号分解为其基本成分,然后重新合成为原始信号的实验。
这个实验可以通过数字信号处理软件来完成。
实验过程如下:
1. 准备一个以正弦信号为基础的复合信号,并记录下它的频率、振幅和相位。
2. 使用傅里叶变换分析这个复合信号,并记录下每个频率成分的振幅和相位。
3. 从傅里叶分析的结果中选择一个频率成分。
4. 使用傅里叶反变换来合成一个只包含所选择频率成分的信号。
5. 重复步骤3和4,直到所有频率成分都被合成为单独的信号。
6. 将所有信号合成为一个单一的信号。
7. 与原始复合信号进行比较,观察差异。
通过这个实验,我们可以了解如何分解信号,并重新将其合成为原始信号。
这个实验不仅提高了我们对信号分析的理解,也有利于我们对信号处理算法的应用和
优化。