Ψ(r,t)
u(r)f
t
u(r)e
i
Et
定态波函数
21
说明: • E是粒子的总能量,定态下与时间t无关 • 定态下的概率密度为:
ΨΨ uu
与时间无关即定态时粒子在空间的概率 分布不随时间变化
22
§3-5 算符与力学量 一、算符 (运算符号) 量子力学中每一个力学量对应一个算符
R2 (r)4 r 2dr r / a1
给定 n , l 值可求出R 2 r
40
例:相对概率 R2r2 随 r 的变化
n 1 l 0
R2r2
n 2 l 1 R2r2
123
r / a1
r a1 出现的概率最大
246
r / a1
r 4a1 出现的概率最大
41
四、氢原子问题上量子力学和玻尔理论的比较 ⒈ 理论的出发点
可解决一般结构与精细结构 可以给出谱线强度大小
准确结果
44
4. 主要结论的区别和联系
① 能量
两种理论采用不同途径得到的原子内部 的总能量是完全相同:
En
mee4
(40 )2 22
1 n2
n 1、2、3
45
②角动量
玻尔理论: P n n 1,2,3n
量子力学: Pl l(l 1) l 0, 1, 2(n 1)
d) ( d
m2
sin2
) 0
②
d 2
d 2
m2
0
③
28
二、方程的解 利用标准化条件和归一化条件得到三个方程 的解分别如下: