原子物理3第三章详解
- 格式:ppt
- 大小:6.95 MB
- 文档页数:109
第三章习题解答3-1 电子的能量分别为10eV 、100eV 和1 000eV 时,试计算其相应的德布罗意波长。
解:根据公式hp λ==10eV 、100eV 、1 000eV得1240eV λ=⋅因此有:(1)当110,0.39K E eV nm λ===时 (2)当1100,0.123K E eV nm λ===时 (3)当11000,0.039K E eV nm λ===时3-2设光子和电子的波长均为0.4nm ,试问(1)光子的动量与电子的动量之比是多少?(2)光子的动能与电子的动能之比是多少?解:由题意知Q 光子的动量h p λ= , 光子的能量cE h hνλ==电子的动量 h p λ= , 电子的能量2e E m c =∴(1)121p p = (2)126212400.0610.40.40.40.51110e e E h hc eV nm E m c m c eV nm⋅====⨯⨯⋅ 3-3若一个电子的动能等于它的静止能量,试求:(1)该电子的速度为多大?(2)其相应的德布罗意波长是多少?解:(1)相对论给出运动物体的动能为:20()k E m m c =-,而现在题设条件给出20k E m c =故有2200()m c m m c ∴=-由此推得02m m ===2230.8664v v c c ∴=⇒==(2)0hp c λ==Q0.0014nm λ∴===3-4把热中子窄束射到晶体上,由布喇格衍射图样可以求得热中子的能量。
若晶体的两相邻布喇格面间距为0.18,一级布喇格掠射角(入射束与布喇格面之间的夹角)为30度,试求这些热中子的能量。
解:根据布喇格晶体散射公式: 2sin 20.18sin300.18d nm λθ==⨯⨯=o 而热中子的能量较低,其德布罗意波长可用下式表示:h p λ==()222220.02522k hc h E eV m mc λλ=== 3-5电子显微镜中所用加速电压一般都很高,电子被加速后的速度很大,因而必须考虑相对论修正。
3-1电子的能量分别为10eV ,100 eV ,1000 eV 时,试计算相应的德布罗意波长。
解:依计算电子能量和电子波长对应的公式 nm E 2261.=λnmnm 388010.==λ 1.226 nm nm 0.12261001.2262==λnm nm 0.038810001.2263==λ3-2 设光子和电子的波长均为0.4nm ,试问:(1)光子的动量与电子的动量之比是多少?(2)光子的动能与电子的动能之比是多少?解:(1)由ph =λ 可知 光子的动量等于电子的动量,即p 光子:p 电子=1:1(2)由 光子动能与波长的对应的关系 nm KeV E )(光子光子 1.24=λ电子动能与波长的关系 nm E 电子电子 1.226=λnm E )(电子电子λ= 1.226则知962940..31.226101.2423=⨯⨯=电子光子E E第三章3题解3-3 若一个电子的动能等于它的静止能量,试求:(1)该电子的速度为多大?(2)其相应的德布罗意波长是多少?解: (1)依题意,相对论给出的运动物体的动能表达式是:)111(cm cv c m E k =--=所以1=--1)11(22cv0.866c c 43v ≈=(2) 根据电子波长的计算公式:0.001715nmeV105111.226nm)(1.226nm3=⨯==eV E k λ3-4 把热中子窄束射到晶体上,由布喇格衍射图样可以求得热中子的能量.若晶体的两相邻布喇格面间距为0.18nm ,一级布喇格掠射角(入射束与布喇格面之间的夹角)为30°,s 试求这些热中子的能量.第三章 练习5,63-5 电子显微镜中所用加速电压一般都很高,电子被加速后的速度很大,因而必须考虑相对论修正.试证明:电子的德布罗意波长与加速电压的关系应为:nm 226.1rV =λ式中Vr =V (1+0.978×10-6),称为相对论修正电压,其中电子加速电压V 的单位是伏特.3-6 (1)试证明:一个粒子的康普顿波长与其德布罗意波长之比等于1-⎪⎪⎭⎫⎝⎛E E 式中E o 和E 分别是粒子的静止能量和运动粒子的总能量.(康普顿波长λc =h /mc ,m 为粒子静止质量,其意义在第六章中讨论)(2)当电子的动能为何值时,它的德布罗意波长等于它的康普顿波长?第三章7,8题参考答案3-7 3-7 一原子的激发态发射波长为600nm 的光谱线,测得波长的精度为10-=λλ∆,试问该原子态的寿命为多长?解: λ=ν=c h h Eλλ∆=∆hc E2≥∆∆E ts c hc Et 106110314341010600422--⨯=⨯⨯⨯⨯⨯=λ∆λπλ=λ∆λ⋅λ=∆≥∆..3-8 一个电子被禁闭在线度为10fm 的区域中,这正是原子核线度的数量级,试计算它的最小动能. 解: 2≥∆∆x p x 粒子被束缚在线度为r 的范围内,即Δx = r那么粒子的动量必定有一个不确定度,它至少为:x2∆≥∆ x p∵ ])[(x x x p p p -=∆ 0=x p∴ 平均平均)()(31p p x =∆∴ 电子的最小平均动能为 eV mrE k 10848283⨯==.3-9 已知粒子波函数⎭⎬⎫⎩⎨⎧---=c z b y a x N 2||2||2||exp ψ,试求:(1)归一化常数N ;(2)粒子的x 坐标在0到a 之间的几率;(3)粒子的y 坐标和z 坐标分别在-b →+b 和-c →+c.之间的几率.3-10 若一个体系由一个质子和一个电子组成,设它的归一化空间波函数为ψ(x 1,y 1,z 1;x 2,y 2,z 2),其中足标1,2分别代表质子和电子,试写出: (1)在同一时刻发现质子处于(1,0,0)处,电子处于(0,1,1)处的几率密度;(2)发现电子处于(0,0,0),而不管质子在何处的几率密度;(3)发现两粒子都处于半径为1、中心在坐标原点的球内的几率大小第三章习题11,123-11 对于在阱宽为a 的一维无限深阱中运动的粒子,计算在任意本征态ψn中的平均值x 及)(x x -,并证明:当n →∞时,上述结果与经典结果相一致. 3-12 求氢原子1s 态和2P 态径向电荷密度的最大位置.3-13 设氢原子处在波函数为1),,(ar ear -⋅=ππϕθψ的基态,a 1为第一玻尔半径,试求势能re r U 41)(πε-= 的平均值.3-14 证明下列对易关系:i p y =],[ 0=],[y p x0],[x =L xz L xi ],[y = 0=],[x x L pz P L pi ],[y x =。
原子物理第三章习题答案第三章量子力学初步3.1 波长为οA 1的X 光光子的动量和能量各为多少?解:根据德布罗意关系式,得:动量为:12410341063.6101063.6----=?==秒米千克λhp 能量为:λ/hc hv E==焦耳151083410986.110/1031063.6---?==。
3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:meV h 2/=λ 对于电子:库仑公斤,19311060.11011.9--?=?=e m把上述二量及h 的值代入波长的表示式,可得:οοολA A A V 1225.01000025.1225.12===对于质子,库仑公斤,19271060.11067.1--?=?=e m ,代入波长的表示式,得:ολA 319273410862.2100001060.11067.1210626.6----?==3.3 电子被加速后的速度很大,必须考虑相对论修正。
因而原来ολA V25.12=的电子德布罗意波长与加速电压的关系式应改为:ολA V V)10489.01(25.126-?-=其中V 是以伏特为单位的电子加速电压。
试证明之。
证明:德布罗意波长:p h /=λ对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:222022c p c Km K =+而被电压V 加速的电子的动能为:eV K =2200222/)(22)(c eV eV m p eV m ceV p +=+=∴因此有:2002112/c m eV eVm h p h +==λ一般情况下,等式右边根式中202/c m eV 一项的值都是很小的。
所以,可以将上式的根式作泰勒展开。
只取前两项,得:)10489.01(2)41(260200V eVm h c m eV eVm h -?-=-=λ 由于上式中οA VeV m h 25.122/0≈,其中V 以伏特为单位,代回原式得:ολA V V)10489.01(25.126-?-=由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。