物理化学第三章
- 格式:ppt
- 大小:885.50 KB
- 文档页数:62
第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解:(1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
证: (反证法) 设 r ir ηη>不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。
(1)系统与100℃的热源接触。
(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。
第三章 多组分体系热力学内容提要只要指定两个强度性质便可以确定单组分体系的状态。
在多组分体系中,决定体系状态的变量还需包括组成体系的各物质的量。
在多组分体系热力学中,有两个重要的概念:偏摩尔量和化学势。
1、偏摩尔量(1)定义:设X 代表多组分体系中任一容量性质,在等温、等压、组成不变的条件下,体系中B 物质的容量性质Z 对B 物质的量n B 的偏微分称偏摩尔量,表示为Z 。
Z =(∂Z∂n B )T,p,nB(B ≠B )偏摩尔量是强度性质,和体系的总量无关,和组成体系各物质的浓度有关。
(2)偏摩尔量的集合公式∑==1B B B Z n Z多组分体系的广度性质等于体系中各组分物质的量与该物质偏摩尔性质的乘积之和。
(3)吉布斯-杜亥姆公式01=∑=B BB dZn该式表述了当发生一个无限小过程时,体系中各组分偏摩尔量变化值之间的关系。
它表明在均相体系中各组分的偏摩尔量之间是相互联系的,具有此消彼长的关系。
2、化学势(1)定义:偏摩尔吉布斯能G B,称为化学势,用μB 表示,单位为J·mol -1。
μB =(∂G∂n B )T,P,nB≠B广义的化学势:μB =(∂U ∂n B )s,v,nB(B≠B ) =(∂H ∂n B )s,p,nB(B≠B ) =(∂F ∂n B )T,V ,nB(B≠B ) =(∂G ∂n B )T,P,nB(B≠B ) (2)多组分组成可变体系的四个热力学基本公式:dU=TdS-pdV+B BBdn ∑μdH=TdS-pdV+B BBdn ∑μdF=sdT-Vpd+B BB dn ∑μdG=sdT-Vpd+B BBdn ∑μ(3)化学势的一些关系式 化学势集合公式∑=BB B n G μ等温、等压条件下化学势的吉布斯-杜亥姆公式∑BB Bd nμ化学势与温度的关系(∂μB∂T )p,nB=-V m ,B ) 化学势与压力的关系(∂μB ∂p )T,nB =v m ,B3、化学势判据等温、等压、W'=0条件下0≤∑B BB dn μ(1)相平衡:在等温、等压、W'=0的条件下,组分B 在α、β、…等各相达到平衡的条件是μB (α)=μB (β)=…在上述条件下,如果μB (α)>μB (β),则组分B 自发地从α相向β相转移。
第三章 化学反应热力学总结本章主要是运用热力学的基本概念、原理和方法研究化学反应的能量变化,引入反应焓与温度的关系式——Kirchhoff 公式,建立热力学第三定律以求算化学反应的熵变,引入化学热力学重要关系式——Gibbs-Helmholtz 方程。
一、 基本概念1、化学反应进度 ()/B B d dn ξξν= B B n /∆ξ=∆ν 或 B B n /ξ=∆ν2、盖斯定律3、标准生成热4、标准燃烧热5、热力学第三定律6、规定熵与标准熵 二、化学反应焓变的计算公式1、恒压反应焓与恒容反应焓的关系 p,m V,m BBQ Q (g)RT =+ν∑或 p ,m V ,mB BH U(g )RT ∆=∆+ν∑ 简写为: m m B BH U (g)RT ∆=∆+ν∑ 2、用f B H ∆$计算r m H ∆$: r m H ∆$(298K)=Bf B BH (298K)ν∆∑$3、由标准燃烧焓c m H ∆!的数据计算任一化学反应的标准反应焓r m H ∆!()r m H 298K ∆=$()B C m,B BH 298K -ν∆∑$4、计算任意温度下的r m H ∆!——基尔霍夫公式(1)微分式 r m B p,m p,m Bp H (T)C (B)C T ⎡⎤∂∆=ν=∆⎢⎥∂⎣⎦∑$(2)已知()r m H 298K ∆$求任意温度下的r m H ∆!当(),p m C B 表示式为形式: ()2,p m C B a bT cT =++ 时()()T2r mr m298K HTK H 298K (a bT cT )dT ∆=∆+∆+∆+∆⎰$$,积分得:()()()()2233r m r m b c H TK H 298K a T 298T 298(T 298)23∆∆∆=∆+∆-+-+-$$若令:230r m b c H H (298k)a 29829829823∆∆∆=∆-∆⨯-⨯-⨯$则: 23r m 0b C H (TK)H aT T T 23∆∆∆=∆+∆++$三、化学反应熵变的计算1、知道某一物质B 在298K 时的标准熵值,求该物质在任一温度时的标准熵值的公式()()(),,,298298TKm Bm Bp m K dT STK S K C B T=+⎰$$ 2、已知(),298m B S K $计算标准反应熵变r m S ∆$(298K)r m B m,B S (298k)S (298K)∆=ν∑$$3、任意温度 TK 时的标准反应熵变值r m S ∆$(TK )的计算r m S ∆$(TK )=r mS ∆$ (298K)+TKp,m 298KC dT T∆⎰式中,p m C ∆ 为产物与反应物的热容差, ,p m C ∆=(),Bp m BC B ν∑四、任意温度下化学反应吉布斯自由能的计算1、微分式 m m 2PG ()H T T T ⎡⎤∆∂⎢⎥∆=-⎢⎥∂⎢⎥⎢⎥⎣⎦$$2、不定积分式 'mm 2G H dT I T T∆∆=-+⎰$$ ('I 为积分常数) (1)、m H ∆$为常数时m mG H I T T∆∆=+$$或 m G ∆$=m H ∆$ +IT (2)、m H ∆$表示为温度的函数,且符合Kirchhoff 定律的形式:23m 0b c H (TK)H aT T T 23∆∆∆=∆+∆++$ 式中0H ∆为积分常数 20mH G 11a ln T bT cT I T T 26∆∆=-∆-∆-∆+$ 即 23m 011G (TK)H aT ln T bT cT IT 26∆=∆-∆-∆-∆+$。
第三章 热力学第二定律主要公式及使用条件1. 热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。
W 为在循环过程中热机中的工质对环境所作的功。
此式适用于在任意两个不同温度的热源之间一切可逆循环过程。
2. 卡诺定理的重要结论2211//T Q T Q +⎩⎨⎧=<可逆循环不可逆循环,,00任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。
3. 熵的定义4. 克劳修斯不等式d S {//Q T Q T =>δ, δ, 可逆不可逆5. 熵判据a mb s y s i s o S S S ∆+∆=∆{0, 0, >=不可逆可逆 式中iso, sys 和amb 分别代表隔离系统、系统和环境。
在隔离系统中,不可逆过程即自发过程。
可逆,即系统内部及系统与环境之间皆处于平衡态。
在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。
此式只适用于隔离系统。
6. 环境的熵变rd δ/S Q T =ambys amb amb amb //S T Q T Q s -==∆7. 熵变计算的主要公式222r 111δd d d d Q U p V H V p S T T T+-∆===⎰⎰⎰ 对于封闭系统,一切0=W δ的可逆过程的S ∆计算式,皆可由上式导出(1),m 2121ln(/)ln(/)V S nC T T nR V V ∆=+,m 2112ln(/)ln(/)p S nC T T nR p p ∆=+,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ∆=+上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程(2) T 2112l n (/)l n (/)S n R V V n R p p ∆== 此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。