高考专题讲解绳联物体的速度分解问题
- 格式:doc
- 大小:140.50 KB
- 文档页数:5
牵连体速度分解问题在《2012年江苏高考物理说明》中,在考点“运动的合成和分解”中删去了“只限于单个物体”的说明,笔者预测2012年江苏高考物理中可能有“牵连体速度”题型出没,现分类解析之。
类型1 绳拉物(或物拉绳)问题:由于高中研究的绳都是不可伸长的,即绳的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳和平行于绳两个分量,根据沿绳方向的分速度大小相同求解. 速度0v 拉水平面上的物【例题1】如图所示,人用绳子通过定滑轮以不变的体A ,当绳与水平方向成θ角时,求物体A 的速度。
解析:本题的关键是正确地确定物体A 的两个分运动.物体A 的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短,绳长缩短的速度即等于01v v =;二是随着绳以定滑轮为圆心的摆动,它不改变绳长,只改变进行分解。
所以1v 及2v 角度θ的值,分速度为2v 。
这样就可以将A v 按图示方向实际上就是A v 的两个分速度,如图所示,由此可得θθcos cos 01v v v A ==。
方法提炼:密切关注合速度方向即为物体实际运动方向,而分速度的两个方向:一是沿绳方向,使绳长度变化,二是垂直于绳方向,使绳转动。
对比:若水平面光滑,物体的质量为m,此时的拉力为F ,求物体的加速度。
沿水平方向和竖直方向分解F ,水平方向分量为cos F θ,竖直方向分量为sin F θ。
故cos F F a m m θ==合.需要特别提醒的是,不能把“运动的合成与分解”混同于“力的合成与分解”。
类型2 杆两端的物体速度由于高中研究的杆都是不可伸长的,即杆的长度不会改变,所以解题原则是:把杆两端的物体的速度分解到沿着杆和垂直于杆两个方向,根据沿着杆的分速度相等求解. 【例题2】如图所示,一轻杆两端分别固定质量为m A 和m B 的两个小球A 和B (可视为质点).将其放在一个直角形光滑槽中,已知当轻杆与槽左壁成α角时,A 球沿槽下滑的速度为V A ,求此时B 球的速度V B ?解析:A 球以V A 的速度沿斜槽滑下时,可分解为:一个使杆压缩的分运动,设其速度为V A1;一个使杆绕B 点转动的分运动,设其速度为V A2。
2012高考物理二轮复习教案:母题系列精品教案高考题千变万化,但万变不离其宗。
千变万化的新颖高考题都可以看作是由母题衍生而来。
研究母题,掌握母题解法,使学生触类旁通,举一反三,可使学生从题海中跳出来,轻松备考,事半功倍。
母题三十、绳端速度分解【方法归纳】对于绳连物体的运动,把物体的实际速度分解为沿绳方向和垂直绳方向两个分速度。
由于绳不可伸长,一根绳两端物体沿绳方向的速度分量相等。
典例30.(2011上海物理)如图,人沿平直的河岸以速度v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行。
当绳与河岸的夹角为α,船的速率为(A)v sin α (B) v/sin α(C) v cos α (D) v/cos α【解析】:将人沿平直的河岸的速度v 沿绳方向和垂直绳方向分解,沿绳方向分速度为v cos α,它等于船的速率,选项C 正确。
【答案】C【点评】此题通过绳端沿河岸的速度考查运动的分解。
衍生题1.(2012洛阳期中考试)一探照灯照射在云层底面上,云层底面是与地面平行的平面,如图3所示,云层底面距地面高h ,探照灯以匀角速度ω在竖直平面内转动,当光束转到与竖直方向夹角为θ时,云层底面上光点的移动速度是( )A .h ωB .cos h ωθC .2cos h ωθD .tan h ωθ 解析:当光束转到与竖直方向夹角为θ时,云层底面上光点转动的线速度为cos h ωθ。
设云层底面上光点的移动速度为v ,则有vcos θ=cos h ωθ,解得云层底面上光点的移动速度v=2cos h ωθ,选项C 正确。
【答案】.C 【点评】此题通过光束偏转考查无形绳端的速度分解。
衍生题2.水平面上两个物体A 、B 通过一根跨过定滑轮的轻绳相连。
现物体A 以v 1速度向右匀速运动,当轻绳被拉成与水平面夹角分别为α、β时,则物体B 的速度为A .v 1sin α/sin βB .v 1cos α/sin βC .v 1sin α/cos βD .v 1cos α/cos β【解析】:将A 的速度v 1沿轻绳方向和垂直轻绳方向分解,则沿轻绳方向速度分量为v 1 cos α。
关联速度的分解收集于网络,如有侵权请联系管理员删除“关联”速度的分解在高中运动的合成与分解教学中,学生常对该如何分解速度搞不清楚、或很难理解,其主要原因是无法弄清楚哪一个是合速度、哪一个是分速度.这里有一个简单的方法:物体的实际运动方向就是合速度的方向,然后分析这个合速度所产生的实际效果,以确定两个分速度的方向.一、绳、杆连接的物体绳、杆等连接的物体,在运动过程中,其两端物体的速度通常是不一样的,但两端物体的速度是有联系的,称为“关联”速度.关联速度的关系——物体沿杆(或绳)方向的速度分量大小相等.因此,求这类问题时,首先要明确绳连物体的速度为合速度,然后将两物体的速度分别分解成沿绳方向和与绳垂直方向,令两物体沿绳方向的速度相等即可求出.例1.如图1-1所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?解析:绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图1-2所示进行分解.其中:v =v 物cos θ,使绳子收缩,v ⊥=v 物sin θ使绳子绕定滑轮上的A 点转动,所以v 物=cos v . 例2.一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图2-1所示,物块以速度v 向右运动,试求当杆与水平方向夹角为θ时,小球A 的线速度v A 图1-图1-2收集于网络,如有侵权请联系管理员删除图4解析:选取物与棒接触点B 为连结点,B 点的实际速度(合速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2,因此,将这个合速度沿棒及垂直于棒的两个方向分解.由速度矢量分解图得v 2=v sin θ,设此时OB 长度为a ,则a =h /sin θ,令棒绕O 点转动角速度为ω,则ω=v 2/a =v sin 2θ/h ,故A 的线速度v A =ωL =vL sin 2θ/h .例3.如图3-1所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置,SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动的瞬时速度v 为多大? 解析:由几何光学知识可知,当平面镜绕O 逆时针转过30°时,则∠SOS ′=60°,此时OS ′=L /cos60°,选取光点S ′为连结点,该点实际速度(合速度)就是在光屏上移动速度v ;光点S ′又在反射光线OS ′上,它参与沿光线OS ′的运动速度v 1和绕O 点转动线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图3—2可得:v 1=v sin60°,v 2=v cos60°,又由圆周运动知识可得,光线OS ′绕O 转动角速度为2ω,则:v 2=2ωL /cos60°,vc os60°=2ωL /cos60°,解得v =8ωL .二、相互接触的物体求相互接触物体的速度关联问题时,首先要明确两接触物体的速度,分析弹力的方向,然后将两物体的速度分别沿弹力的方向和垂直于弹力的方向进行分解,令两物体沿弹力方向的速度相等即可求出.例4.一个半径为R 的半圆柱沿水平方向向右以速度v 0匀速运动.在半圆柱上放置一根竖直杆,此杆只图2—1 图2—2图3-1 图3—2收集于网络,如有侵权请联系管理员删除 能沿竖直方向运动,如图4所示.当杆与半圆柱体接触点P 与柱心的连线与竖直方向的夹角为θ时,求竖直杆运动的速度.解析:设竖直杆运动的速度为v 1,方向竖直向上,由于弹力沿OP 方向,所以有v v 01、在OP 方向的投影相等,即有v v 01sin cos θθ=,解得v v 10=tan θ.。
绳联物体的速度分解问题指物拉绳(杆)或绳(杆)拉物问题。
由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相同求解。
合速度方向:物体实际运动方向分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩)垂直于绳(杆)方向:使绳(杆)转动速度投影定理:不可伸长的杆或绳,若各点速度不同,各点速度沿绳方向的投影相同。
这类问题也叫做:斜拉船的问题——有转动分速度的问题【例题】如图所示,人用绳子通过定滑轮以不变的速度0v 拉水平面上的物体A ,当绳与水平方向成θ角时,求物体A 的速度。
★解析:解法一(分解法):本题的关键是正确地确定物体A 的两个分运动。
物体A 的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短。
绳长缩短的速度即等于01v v =;二是随着绳以定滑轮为圆心的摆动,它不改变绳长,只改变角度θ的值。
这样就可以将A v 按图示方向进行分解。
所以1v 及2v 实际上就是A v 的两个分速度,如图所示,由此可得 θθcos cos 01v v v A ==。
解法二(微元法):要求船在该位置的速率即为瞬时速率,需从该时刻起取一小段时间来求它的平均速率,当这一小段时间趋于零时,该平均速率就为所求速率。
设船在θ角位置经△t 时间向左行驶△x 距离,滑轮右侧的绳长缩短△L ,如图2所示,当绳与水平方向的角度变化很小时,△ABC 可近似看做是一直角三角形,因而有θcos x L ∆=∆,两边同除以△t 得:θcos tx t L ∆∆=∆∆ 即收绳速率θcos 0A v v =,因此船的速率为:θcos 0v v A = 总结:“微元法”。
可设想物体发生一个微小位移,分析由此而引起的牵连物体运动的位移是怎样的,得出位移分解的图示,再从中找到对应的速度分解的图示,进而求出牵连物体间速度大小的关系。
专题绳子末端速度的分解绳子末端速度的分解问题,是一个难点,同学们在分解时,往往搞不清哪一个是合速度,哪一个是分速度。
以至解题失败。
下面结合例题讨论一下。
,当船头的绳索与例1如图1所示,在河岸上利用定滑轮拉绳索使小船靠岸,拉绳速度大小为v1水平面夹角为θ时,船的速度多大?解析我们所研究的运动合成问题,都是同一物体同时参与的两个分运动的合成问题,而物体相对于给定参照物(一般为地面)的实际运动是合运动,实际运动的方向就是合运动的方向。
本例中,船的实际运动是水平运动,它产生的实际效果可以A点为例说明:一是A点沿绳的收缩方向的运动,二是A 点绕O点沿顺时针方向的转动,所以,船的实际速度v可分解为船沿绳方向的速度v1和垂直于绳的速度v2,如图1所示。
由图可知:v=v1/cosθ点评不论是力的分解还是速度的分解,都要按照它的实际效果进行。
本例中,若将拉绳的速度分解为水平方向和竖直方向的分速度,就没有实际意义了,因为船并不存在竖直方向上的分运动例2如图2所示,一辆匀速行驶的汽车将一重物提起,在此过程中,重物A的运动情况是【】A. 加速上升,且加速度不断增大B. 加速上升,且加速度不断减小C. 减速上升,且加速度不断减小D. 匀速上升答案 B跟综练习如图4所示,汽车甲以速度v1拉汽车乙前进,乙的速度为v2,甲、乙都在水平面上运动,则v1∶v2=__________。
答案 cosα∶1【总结提升】一、在进行速度分解时,首先要分清合速度与分速度(合速度就是物体实际运动的速度)。
二、绳子末端速度的分解:(1)沿绳子方向两个绳连接的物体沿绳子方向的速度大小相等。
(2)当绳与物体运动方向有夹角时,沿绳子方向和垂直于绳子方向速度为分速度。
【当堂巩固】1、如图3所示,汽车甲以速度v 1拉汽车乙前进,乙的速度为v 2,甲、乙都在水平面上运动,求v 1∶v 22、如图5所示,杆OA 长为R ,可绕过O 点的水平轴在竖直平面内转动,其端点A 系着一跨过定滑轮B 、C 的不可伸长的轻绳,绳的另一端系一物块M 。
速度之 合成与分解之 绳拉物体问题物体与轻绳连接这一种模型是高中物理中的一种常见模型,有关物体在绳子作用下的运动的问题是一种常见问题。
下面主要就这类问题的主要情形及同学们易出错的地方加以分析剖析。
一、有关运动的合成和分解问题绳拉物体问题在运动的合成与分解这一部分非常常见,处理这类问题应牢记两个原则。
①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。
【例1】如右图所示,A 、B 两物体通过一条跨过定滑轮的绳子相连接。
A 沿斜面下滑,B 沿水平面滑动。
由于A 、B 的运动方向均沿绳子的方向,所以两物体的速度均和与它们相连接的绳子的速度相同。
因而A 、B 两物体的速度大小相等。
②当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,此类问题应该用运动的合成和分解的知识解答。
【例2】如右图所示,人用绳子通过定滑轮拉物体A ,当人以速度0v 匀速前进时,求物体A 的速度。
首先要分析物体A 的运动与人拉绳的运动之间有什么关系。
物体A 的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短,绳长缩短的速度即等于0v ;二是垂直于绳以定滑轮为圆心的摆动,它不改变绳长。
这样就可以求得物体A 的速度0cos A v v θ=。
当物体A 向左移动,θ将逐渐变大,A v 逐渐变大。
虽然人做匀速运动,但物体A 却在做变速运动。
【例3】光滑水平面上有A 、B 两个物体,通过一根跨过定滑轮的轻绳子相连,如右图所示,它们的质量分别为A m 和B m 。
当水平力F 拉着A 且绳子与水平方向的夹角为45A θ=,30B θ=时,A 、B 两物体的速度之比是多少?【解析】在本题中,由于A 、B 的速度方向均不沿绳子方向,所以两物体的速度均不等于绳子伸长或缩短的速度。
设沿绳子方向的分速度大小为v ,则由速度的合成与分解可得:cos cos 45A A v v v θ==,cos cos30B B v v v θ==可得:A B v v =∶二、有关物体速度的突变问题对于物体的速度方向与绳子不平行的此类问题,由前面的分析可知,物体的速度可分解为沿绳子方向的分速度和垂直于绳子方向的分速度。
绳(杆)端速度分解模型一、基础知识1、模型特点沿绳(或杆)方向的速度分量大小相等.2、思路与方法合运动→绳拉物体的实际运动速度v 分运动→Error!方法:v 1与v 2的合成遵循平行四边形定则.3、解决此类问题时应把握以下两点:(1)确定合速度,它应是小船的实际速度;(2)小船的运动引起了两个效果:一是绳子的收缩,二是绳绕滑轮的转动.应根据实际效果进行运动的分解.二、练习1、如图所示,轻绳通过定滑轮拉动物体,使其在水平面上运动.若拉绳的速度为v 0,当绳与水平方向夹角为θ时,物体的速度v 为________.若此时绳上的拉力大小为F ,物体的质量为m ,忽略地面的摩擦力,那么,此时物体的加速度为________.答案 v 0cos θF cos θm解析 物体的运动(即绳的末端的运动)可看做两个分运动的合成:(1)沿绳的方向被牵引,绳长缩短,缩短的速度等于v 0;(2)垂直于绳以定滑轮为圆心的摆动,它不改变绳长.即速度v 分解为沿绳方向和垂直绳方向的分速度,如图所示,v cos θ=v 0,v =.v 0cos θ拉力F 产生竖直向上拉物体和水平向右拉物体的效果,其水平分量为F cos θ,加速度a =.F cos θm 2、如图所示,一人站在岸上,利用绳和定滑轮拉船靠岸,在某一时刻绳的速度为v ,绳AO 段与水平面的夹角为θ,OB 段与水平面的夹角为α.不计摩擦和轮的质量,则此时小船的速度多大?解析 小船的运动引起了绳子的收缩以及绳子绕定滑轮转动的效果,所以将小船的运动分解到绳子收缩的方向和垂直于绳子的方向,分解如图所示,则由图可知v A =.v cos θ答案 vcos θ3、如图所示,在水平地面上做匀速直线运动的小车,通过定滑轮用绳子吊起一个物体,若小车和被吊的物体在同一时刻的速度分别为v 1和v 2,绳子对物体的拉力为F T ,物体所受重力为G ,则下列说法正确的是( )A .物体做匀速运动,且v 1=v 2B .物体做加速运动,且v 2>v 1C .物体做加速运动,且F T >GD .物体做匀速运动,且F T =G 答案 C解析 把v 1分解如图所示,v 2=v 1cos α,α变小,v 2变大,物体做加速运动,超重,F T >G ,选项C 正确.4、人用绳子通过定滑轮拉物体A ,A 穿在光滑的竖直杆上,当以速度v 0匀速地拉绳使物体A 到达如图所示位置时,绳与竖直杆的夹角为θ,则物体A 实际运动的速度是( )A .v 0sin θB.v 0sin θC .v 0cos θ D.v 0cos θ答案 D解析 由运动的合成与分解可知,物体A 参与两个分运动:一个是沿着与它相连接的绳子的运动,另一个是垂直于绳子斜向上的运动.而物体A实际运动轨迹是沿着竖直杆向上的,这一轨迹所对应的运动就是物体A 的合运动,它们之间的关系如图所示.由几何关系可得v =,所以v 0cos θD 项正确.5、如图,人沿平直的河岸以速度v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行.当绳与河岸的夹角为α时,船的速率为( )A .v sin α B.vsin αC .v cos α D.v cos α答案 C解析 如图所示,把人的速度沿绳和垂直绳的方向分解,由几何知识有v 船=v cos α,所以C 正确,A 、B 、D 错误.6、A 、B 两物体通过一根跨过定滑轮的轻绳相连放在水平面上,现物体A 以v 1的速度向右匀速运动,当绳被拉成与水平面夹角分别为α、β时,如图所示.物体B 的运动速度v B 为(绳始终有拉力)( )A .v 1sin α/sin βB .v 1cos α/sin βC .v 1sin α/cos βD .v 1cos α/cos β答案 D解析 A 、B两物体的速度分解如图.由图可知:v 绳A =v 1cos αv 绳B =v B cos β由于v 绳A =v 绳B所以v B =v 1cos α/cos β,故D对.。
绳联物体的速度分解问题
指物拉绳(杆)或绳(杆)拉物问题。
由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相同求解。
合速度方向:物体实际运动方向
分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩)
垂直于绳(杆)方向:使绳(杆)转动
速度投影定理:不可伸长的杆或绳,若各点速度不同,各点速度沿绳方向的投影相同。
这类问题也叫做:斜拉船的问题——有转动分速度的问题
【例题】如图所示,人用绳子通过定滑轮以不变的速度0v 拉水平面上的物体A ,当绳与水平方向成θ角时,求物体A 的速度。
★解析:解法一(分解法):本题的关键是正确地确定物体A 的两个分运动。
物体A 的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短。
绳长缩短的速度即等于01v v =;二是随着绳以定滑轮为圆心的摆动,它不改变绳长,只改变角度θ的值。
这样就可以将A v 按图示方向进行分解。
所以1v 及2v 实际上就是A v 的两个分速度,如图所示,由此可得
θ
θcos cos 01v v v A ==。
解法二(微元法):要求船在该位置的速率即为瞬时速率,需从该时刻起取一小段时间来求它的平均速率,当这一小段时间趋于零时,该平均速率就为所求速率。
设船在θ角位置经△t 时间向左行驶△x 距离,滑轮右侧的绳长缩短△L ,如图2所示,当绳与水平方向的角度变化很小时,△ABC 可近似看做是一直角三角形,因而有θcos x L ∆=∆,两边同除以△t 得:θcos t
x t L ∆∆=∆∆ 即收绳速率θcos 0A v v =,因此船的速率为:
θ
cos 0v v A = 总结:“微元法”。
可设想物体发生一个微小位移,分析由此而引起的牵连物体运动的位移是怎样的,得出位移分解的图示,再从中找到对应的速度分解的图示,进而求出牵连物体间速度大小的关系。
解法三(能量转化法):由题意可知:人对绳子做功等于绳子对物体所做的功。
人对绳子的拉力为F ,则对绳子做功的功率为01Fv P =;绳子对物体的拉力,由定滑轮的特点可知,
拉力大小也为F ,则绳子对物体做功的功率为θc o s
2A Fv P =,因为21P P =所以θ
c o s 0v v A =。
评点:①在上述问题中,若不对物体A 的运动认真分析,就很容易得出θcos 0v v A =的错误结果;②当物体A 向左移动,θ将逐渐变大,A v 逐渐变大,虽然人做匀速运动,但物体A 却在做变速运动。
总结:解题流程:①选取合适的连结点(该点必须能明显地体现出参与了某个分运动);②确定该点合速度方向(物体的实际速度为合速度)且速度方向始终不变;③确定该点合速度的实际运动效果从而依据平行四边形定则确定分速度方向;④作出速度分解的示意图,寻找速度关系。
【例题】如图所示,在高为H 的光滑平台上有一物体.用绳子跨过定滑轮C ,由地面上的人以均匀的速度v 0向右拉动,不计人的高度,若人从地面上平台的边缘A 处向右行走距离s 到达B 处,这时物体速度多大?物体水平移动了多少距离?
★解析:人的实际运动为合运动,将此合运动分解在沿绳方向和垂直于绳的方向。
[全解]设人运动到B 点时,绳与地面的夹角为θ。
人的运动在绳的方向上的分运动的速度为:θcos 0v 。
物体的运动速度与沿绳方向的运动速度相同,所以物体的运动速度为
2200cos h s s
v v v +==θ。
物体移动的距离等于滑轮右端绳子伸长的长度,
h h s h s d -+=-=22cos θ。
答案:220h s s
v v +=,h h s d -+=22
[小结]分清合运动是关键,合运动的重要特征是,合运动都是实际的运动,此题中,人向前的运动是实际的运动,是合运动;该运动分解在沿绳的方向和垂直于绳的方向,这两个运动的物理意义是明确的,从滑轮所在的位置来看,沿绳的方向的运动是绳伸长的运动,垂直于绳的方向的运动是绳绕滑轮的转动,人同时参与了这两个运动,其实际的运动(合运动)即是水平方向的运动
【例题】如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ角,且重物下滑的速率为v 时,小车的速度为多少?
★解析:方法一:虚拟重物M 在Δt 时间内从A 移过Δh 到达C的运动,如图(1)所示,这个运动可设想为两个分运动所合成,即先随绳绕滑轮的中心轴O 点做圆周运动到B ,位移为Δs 1,然后将绳拉过Δs 2到C .
若Δt 很小趋近于0,那么Δφ→0,则Δs 1=0,又OA =OB , 90)180(21→∆-=
∠φOBA . 亦即Δs 1近似⊥Δs 2,故应有:Δs 2=Δh ·cos θ 因为θυθυcos cos 2'=∆∆=∆∆=t
h t S 所以v ′=v ·cos θ
方法二:重物M 的速度v 的方向是合运动的速度方向,这个v 产生两个效果:一是使绳的这一端绕滑轮做顺时针方向的圆周运动;二是使绳系着重物的一端沿绳拉力的方向以速率v ′运动,如图(2)所示,由图可知,v ′=v ·cos θ.
【例题】一根绕过定滑轮的长绳吊起一重物B ,如图所示,设汽车和重物的速度的大小分别为B A v v ,,则( BD )
A 、
B A v v = B 、B A v v >
C 、B A v v <
D 、重物B 的速度逐渐增大
【例题】如图所示,一轻杆两端分别固定质量为m A 和m B 的两个小球A 和B (可视为质点)。
将其放在一个直角形光滑槽中,已知当轻杆与槽左壁成α角时,A 球沿槽下滑的速度为V A ,求此时B 球的速度V B ?
★解析:A 球以V A 的速度沿斜槽滑下时,可分解为:一个使杆压缩的分运动,设其速
度为V A1;一个使杆绕B 点转动的分运动,设其速度为V A2。
而B 球沿斜槽上滑的运动为合运动,设其速度为V B ,可分解为:一个使杆伸长的分运动,设其速度为V B1,V B1=V A1;一个使杆摆动的分运动设其速度为V B2;
由图可知:ααcos sin 11A A B B V V V V ===
αcot ⋅=A B V V。