人教版初中数学第二十二章二次函数知识点
- 格式:docx
- 大小:782.46 KB
- 文档页数:19
第二十二章 二次函数一、二次函数的有关概念: 一、二次函数的概念:一样地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
二、二次函数解析式的表示方式(1) 一样式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); (2) 极点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);(3)两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).二、二次函数2y ax bx c =++图象的画法1.大体方式:描点法注:五点画图法。
利用配方式将二次函数2y ax bx c =++化为极点式2()y a x h k =-+,确信其开口方向、对称轴及极点坐标,然后在对称轴双侧,左右对称地描点画图.一样咱们选取的五点为:极点、与y 轴的交点()0c ,、和()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).2.画草图 抓住以下几点:开口方向,对称轴,极点,与x 轴的交点,与y 轴的交点.三、二次函数的图像和性质1.二次函数2y ax bx c =++的性质 (1). 当0a >时,抛物线开口向上,对称轴为2bx a =-,极点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2bx a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. (2). 当0a <时,抛物线开口向下,对称轴为2bx a =-,极点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -.2.二次函数 ()2y a x h k=-+ 的性质:四、二次函数图象的平移归纳成八个字“左加右减,上加下减”.五、二次函数与一元二次方程:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情形.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A xB x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,不管x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,不管x 为任何实数,都有0y <.六、二次函数中的符号问题 1. 二次项系数aa 决定了抛物线开口大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b 在二次项系数a 确信的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴确实是y 轴;当0b <时,02b a ->,即抛物线对称轴在y 轴的右边.⑵ 在0a <的前提下,结论恰好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右边;当0b =时,02ba -=,即抛物线的对称轴确实是y 轴;当0b <时,02ba -<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确信的前提下,b 决定了抛物线对称轴的位置. 总结:“左同右异” 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.七、二次函数解析式的确信:依照已知条件确信二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必需依照题目的特点,选择适当的形式,才能使解题简便.一样来讲,有如下几种情形:1. 已知抛物线上三点的坐标,一样选用一样式;2. 已知抛物线极点或对称轴或最大(小)值,一样选用极点式;3. 已知抛物线与x 轴的两个交点的横坐标,一样选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用极点式.。
第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数. 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.22.1.2 二次函数2y ax =的图象和性质1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小.例1.若抛物线y=ax 2经过P (1,﹣2),则它也经过 ( )A .(2,1)B .(﹣1,2)C .(1,2)D .(﹣1,﹣2) 【答案】 【解析】试题解析:∵抛物线y=ax 2经过点P (1,-2), ∴x=-1时的函数值也是-2, 即它也经过点(-1,-2). 故选D .考点:二次函数图象上点的坐标特征.例2.若点(2,-1)在抛物线上,那么,当x=2时,y=_________ 【答案】-12y ax =试题分析:先把(2,-1)直接代入即可得到解析式,再把x=2代入即可.由题意得14-=a ,41-=a ,则241x y -=,当2=x 时,.1441-=⨯-=y考点:本题考查的是二次函数点评:解答本题的关键是掌握二次函数图象上的点适合这个二次函数的关系式. 2. 2y ax c =+的性质: 上加下减.例1.若抛物线y=ax 2+c 经过点P (l ,-2),则它也经过 ( )A .P 1(-1,-2 )B .P 2(-l , 2 )C .P 3( l , 2)D .P 4(2, 1) 【答案】A 【解析】试题分析:因为抛物线y=ax 2+c 经过点P (l ,-2),且对称轴是y 轴,所以点P (l ,-2)的对称点是(-1,-2),所以P 1(-1,-2)在抛物线上,故选:A. 考点:抛物线的性质.例2.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( ) A .﹣1 B .﹣3 C .3 D .7 【答案】D . 【解析】试题分析:∵函数y=ax+b 经过(1,3),(0,﹣2),∴,解得.∴a ﹣b=5+2=7. 故选D .考点:1.直线上点的坐标与方程的关系;2.求代数式的值.例3.两条直线y 1=ax +b 与y 2=bx +a 在同一坐标系中的图象可能是下图中的 ( )2y ax =a b 3b 2+=⎧⎨=-⎩a 5b 2=⎧⎨=-⎩a 的符号开口方向 顶点坐标 对称轴 性质0a > 向上()0c , y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y随x 的增大而增大;0x =时,y 有最大值c .【答案】无正确答案【解析】分析:首先根据两个一次函数的图象,分别考虑a ,b 的值,看看是否矛盾即可. 解:A 、由y 1的图象可知,a <0,b <0;由y 2的图象可知,a>0,b<0,两结论矛盾,故错误; B 、由y 1的图象可知,a >0,b >0;由y 2的图象可知,a >0,b<0,两结论相矛盾,故错误; C 、由y 1的图象可知,a>0,b<0;由y 2的图象可知,a <0,b <0,两结论相矛盾,故错误; D 、由y 1的图象可知,a >0,b >0;由y 2的图象可知,a<0,b<0,两结论相矛盾,故错误. 故无正确答案.点评:此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b 的图象有四种情况: ①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限; ②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限; ③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限; ④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限.22.1.3 二次函数()2y a x h k =-+的图象和性质左加右减.()2y a x h k =-+的性质:例1.将二次函数y=x 2﹣2x ﹣3化成y=(x ﹣h )2+k 形式,则h+k 结果为( ) A .﹣5 B .5 C .3 D .﹣3 【答案】D . 【解析】试题分析:y=x 2-2x-3=(x 2-2x+1)-1-3=(x-1) 2-4. 则h=1,k=-4, ∴h+k=-3. 故选D .考点: 二次函数的三种形式.例2.把二次函数y=x 2+6x+4配方成y=a (x-h )2+k 的形式,得y=___,它的顶点坐标是___. 【答案】(x+3)2-5,(-3,-5) 【解析】试题分析:y=2x +6x+4=2(3)5x ,则顶点坐标为(-3,-5). 考点:二次函数的顶点式. 例3.把二次函数y =a (x -k )2+h 的形式,并写出它的图象的顶点坐标、对称轴. 【答案】y= 顶点坐标(3,-),对称轴方程x =3【解析】试题分析:y=x 2﹣3x+4=(x ﹣3)2﹣, 则顶点坐标(3,﹣),对称轴方程x=3, 考点:二次函数的图像及性质1、二次函数图象的平移(1)平移步骤:方法一:(1)将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; (2)保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:(2)平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:43212+-=x x y 向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2(1)c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)(2)c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)例1.将二次函数y =x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为( ) A .y =x 2-1 B .y =x 2+1 C .y =(x -1)2 D .y =(x +1)2 【答案】A【解析】直接根据上加下减的原则进行解答即可,将二次函数y =x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y =x 2-1.故选A.例2.将二次函数y=x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 A .y=(x–1)2+2 B .y=(x+1)2+2 C .y=(x–1)2–2 D .y=(x+1)2–2 【答案】A . 【解析】试题分析:原抛物线的顶点为(0,0),向右平移1个单位,再向上平移2个单位,那么新抛物线的顶点为(1,2).可设新抛物线的解析式为y=(x ﹣h )2+k ,代入得y=(x ﹣1)2+2. 故选A .考点:二次函数图象与几何变换.例3.将二次函数的图象如何平移可得到的图象( )A .向右平移2个单位,向上平移一个单位B .向右平移2个单位,向下平移一个单位C .向左平移2个单位,向下平移一个单位D .向左平移2个单位,向上平移一个单位 【答案】C【解析】2243(2)1y x x x =++=+-,根据二次函数的平移性质得:向左平移2个单位,向下平移一个单位.故选C.例4.已知点P (﹣1,m )在二次函数y=x 2﹣1的图象上,则m 的值为 ;平移此二次函数的图象,使点P 与坐标原点重合,则平移后的函数图象所对应的解析式为 . 【答案】0,y=x 2﹣2x . 【解析】2x y =342++=x x y∵点P (﹣1,m )在二次函数y=x 2﹣1的图象上, ∴(﹣1)2﹣1=m , 解得m=0,平移方法为向右平移1个单位,平移后的抛物线的二次函数的顶点坐标为(1,﹣1),平移后的函数图象所对应的解析式为y=(x ﹣1)2﹣1=x 2﹣2x , 即y=x 2﹣2x .故答案为:0,y=x 2﹣2x .2、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 3、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.4、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.例1.当a < 0 时,方程ax 2+bx+c=0无实数根,则二次函数y=ax 2+bx+c 的图像一定在 ( ) A 、x 轴上方 B 、x 轴下方 C 、y 轴右侧 D 、y 轴左侧 【答案】B 【解析】试题分析:∵方程ax2+bx+c=0无实数根,∴b2+4ac<0,即函数图形与x轴没有交点又∵a < 0,∴二次函数y=ax2+bx+c的图像一定在x轴下方故选B.考点:二次函数的性质例2.已知二次函数y=ax2+bx+c的图象如图,则a、b、c满足()A、a<0,b<0,c>0B、a<0,b<0,c<0C、a<0,b>0,c>0D、a>0,b<0,c>0【答案】A【解析】试题分析:由于开口向下可以判断a<0,由与y轴交于正半轴得到c>0,又由于对称轴0,可以得到b<0,所以可以找到结果.试题解析:根据二次函数图象的性质,∵开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,又∵对称轴0,∴b<0,所以A正确.考点:二次函数图象与系数的关系.例3.已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0,则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤【答案】D【解析】试题分析:根据抛物线与x轴有两个交点,可得△=b2﹣4ac>0,即b2>4ac,故①正确;根据抛物线对称轴为x=0,与y轴交于负半轴,因此可知ab>0,c<0,abc<0,故②错误;根据抛物线对称轴为x=﹣1,∴2a﹣b=0,故③错误;当x=1时,y>0,即a+b+c>0,故④正确;当x=﹣1时,y<0,即a﹣b+c<0,故⑤正确;正确的是①④⑤.故选D.考点:二次函数图象与系数的关系例4.如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么()A.a<0,b>0,c>0B.a>0,b<0,c>0C.a>0,b>0,c<0D.a>0,b<0,c<0【答案】D【解析】试题分析:因为抛物线开口向上,所以a>0,又对称轴在y0,所以b<0,又因为抛物线与y 轴的交点在x轴下方,所以c<0,所以a>0,b<0,c<0,故选:D.考点:抛物线的性质.例5.已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线.【答案】x=-1.【解析】试题分析:因为点(-4,0)和(2,0)的纵坐标都为0,所以可判定是一对对称点,把两点的横坐标代入公式x=试题解析:∵抛物线与x轴的交点为(-4,0),(2,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x=-1. 考点:抛物线与x 轴的交点.5、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.6、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.7、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.22.2二次函数与一元二次方程1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:例1.已知函数k x x y +-=632(k 为常数)的图象经过点A (0.8,1y ),B (1.1,2y ), C ,3y ),则有( )A .1y <2y <3yB .1y >2y >3yC .3y >1y >2yD .1y >3y >2y 【答案】C 【解析】试题分析:因为函数k x x y +-=632的对称轴是象的草图,观察图象可得:3y >1y >2y ,故选:C .考点:二次函数的性质、二次函数图象上点的坐标特点.例2.已知二次函数y=x 2+2mx +2,当x >2时,y 的值随x 的增大而增大,则实数m 的取值范围是 . 【答案】m≥-2. 【解析】试题分析:根据二次函数的性质,利用二次函数的对称轴不大于2列式计算即可得解. 试题解析:抛物线的对称轴为直线, ∵当x >2时,y 的值随x 值的增大而增大, ∴-m≤2,解得m≥-2.考点:二次函数的性质.例3.函数c bx x y -+=2的图象经过点(1,2),则b-c 的值为 . 【答案】1 【解析】试题分析:把点(1,2)代入c bx x y -+=2,得:12b c +-=,所以1b c -=. 考点:函数图象上的点.例4.已知抛物线y=ax 2+bx+3的对称轴是直线x=1. (1)求证:2a+b=0;(2)若关于x 的方程ax 2+bx ﹣8=0的一个根为4,求方程的另一个根. 【答案】(1)见解析;(2)x=-2 【解析】试题分析:直接利用对称轴公式代入求出即可;根据(1)中所求,再将x=4代入方程求出a ,b 的值,进而解方程得出即可.试题解析:(1)证明:∵对称轴是直线x=1=b=-2a ∴2a+b=0; (2)∵ax 2+bx ﹣8=0的一个根为4,∴16a+4b ﹣8=0,∵b=﹣2a ,∴16a ﹣8a ﹣8=0, 解得:a=1,则b=﹣2,∴a 2x +bx ﹣8=0为:2x ﹣2x ﹣8=0, 则(x ﹣4)(x+2)=0,解得:1x =4,2x =﹣2, 故方程的另一个根为:﹣2.考点:二次函数的性质;二次函数图象与系数的关系;抛物线与x 轴的交点 例5.已知函数21y x bx =+-的图象经过点(3,2). (1)求这个函数的解析式;(2)当0x >时,求使2y ≥的x 的取值范围. 【答案】(1)221y x x =--;(2)3x ≥. 【解析】试题分析:(1)把(3,2)代入函数解析式求出b 的值,即可确定出解析式; (2)利用二次函数的性质求出满足题意x 的范围即可.试题解析:(1)∵函数21y x bx =+-的图象经过点(3,2),∴9312b +-=,解得:2b =-, 则函数解析式为:221y x x =--;(2)当3x =时,2y =,根据二次函数性质当3x ≥时,2y ≥,则当0x >时,使2y ≥的x 的取值范围是3x ≥. 考点:待定系数法求二次函数解析式.22.3 实际问题与二次函数例1.在同一坐标系内,一次函数y=ax+b 与二次函数y=ax 2+8x+b 的图象可能是( )【答案】C 【解析】试题分析:A 、对于一次函数a <0,对于二次函数a >0,则不正确;B 、对于一次函数b <0,对于二次函数b >0,则不正确;C 、正确;D 、对于一次函数b <0,对于二次函数b >0,则不正确. 考点:函数图象例2.学生校服原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是 ( )A .9%B .8.5%C .9. 5%D .10% 【答案】D . 【解析】试题分析:设平均每次降价的百分数是x ,根据等量关系“校服原来每套的售价是100元×(1-下降率)2=每套校服现在的售价是81元”,列出方程100(1-x )2= 81元,解得x 即可,故答案选D .考点:一元二次方程的应用.毕业论文开题报告范文[1]毕业论文开题报告开题报告是指开题者对科研课题的一种文字说明材料。