线段的长短比较重难点题型
- 格式:docx
- 大小:190.54 KB
- 文档页数:9
专题6.3 线段的长短比较-重难点题型【浙教版】【例1】(2021•鼓楼区校级模拟)如图,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC﹣BD B.CD=12BC C.CD=12AB﹣BD D.CD=AD﹣BC【解题思路】根据CD=BC﹣BD和CD=AD﹣AC两种情况和AC=BC对各选项分析后即不难选出答案.【解答过程】解:∵C是线段AB的中点,∴AC=BC=12AB,A、CD=BC﹣BD=AC﹣BD,故本选项正确;B、D不一定是BC的中点,故CD=12BC不一定成立;C、CD=BC﹣BD=12AB﹣BD,故本选项正确.D、CD=AD﹣AC=AD﹣BC,故本选项正确;故选:B.【变式1-1】(2021秋•荔湾区期末)延长线段AB到C,使BC=12AB,反向延长AC到D,使AD=12AC,若AB=8cm,则CD=18cm.【解题思路】根据题中线段的长度关系,即能求出CD的长度.【解答过程】解:如图,BC=12AB=4,AC=AB+BC=8+4=12cm,AD=12AC=6,CD=AD+AC=12+6=18cm.故答案为18.【变式1-2】(2021春•长兴县月考)如图,在线段AB上有C、D两点,CD长度为1cm,AB长为整数,则以A,B,C,D为端点的所有线段长度和不可能为()A.16cm B.21cm C.22cm D.31cm【解题思路】根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB,然后根据CD=1,线段AB的长度是一个正整数,可以解答本题.【解答过程】解:由题意可得,图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和是:AC+CD+DB+AD+CB+AB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=3AB+CD,∴以A、B、C、D为端点的所有线段长度和为长度为3的倍数多1,∴以A、B、C、D为端点的所有线段长度和不可能为21.故选:B.【变式1-3】(2021秋•天津期末)如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm.求CM和AD的长.【解题思路】设AB=2xcm,BC=5xcm,CD=3xcm,求出AD=10xcm,根据M为AD 的中点求出AM=DM=5xcm,列出方程,求出x,即可求出答案.【解答过程】解:设AB=2xcm,BC=5xcm,CD=3xcm,则AD=AB+BC+CD=10xcm,∵M为AD的中点,∴AM=DM=12AD=5xcm,∵BM=AM﹣AB=6cm,∴5x﹣2x=6,解得:x=2,即AD=10xcm=20cm,DM=5xcm=10cm,CD=3xcm=6cm,∴CM=DM﹣CD=10cm﹣6cm=4cm.【题型2 线段中点的有关计算】【例2】(2021春•松北区期末)如图,点G 是AB 的中点,点M 是AC 的中点,点N 是BC 的中点,则下列式子不成立的是( )A .MN =GBB .CN =12(AG −GC)C .GN =12(BG +GC)D .MN =12(AC +GC)【解题思路】由中点的定义综合讨论,一一验证得出结论.【解答过程】解:A 、∵点G 是AB 的中点,点M 是AC 的中点,点N 是BC 的中点, ∴GB =12AB ,MC =12AC ,NC =12BC , ∴MN =MC +NC =12AC +12BC =12AB , ∴MN =GB ,故A 选项不符合题意; B 、∵点G 是AB 的中点, ∴AG =BG ,∴AG ﹣GC =BG ﹣GC =BC , ∵NC =12BC ,∴NC =12(AG ﹣GC ),故B 选项不符合题意; C 、∵BG +GC =BN +NC +CG +GC =2CN +2CG =2GN , ∴GN =12(BG +GC ),故C 选项不符合题意; D 、∵MN =12AB ,AB =AC +CB , ∴MN =12(AC +CB ), ∵题中没有信息说明GC =BC ,∴MN =12(AC +GC )不一定成立,故D 选项符合题意. 故选:D .【变式2-1】(2021秋•邵阳县期末)如图,点C 、D 是线段AB 上任意两点,点M 是AC 的中点,点N 是DB 的中点,若AB =a ,MN =b ,则线段CD 的长是( )A .2b ﹣aB .2(a ﹣b )C .a ﹣bD .12(a +b )【解题思路】先由AB ﹣MN =a ﹣b ,得AM +BN =a ﹣b ,再根据中点的性质得AC +BD =2a ﹣2b ,最后由CD =AB ﹣(AC +BD )即可求出结果. 【解答过程】解:∵AB =a ,MN =b , ∴AB ﹣MN =a ﹣b ,∴AM +BN =a ﹣b ,∵点M 是AC 的中点,点N 是DB 的中点, ∴AM =MC ,BN =DN ,∴AC +BD =AM +MC +BN +DN =2(AM +BN )=2(a ﹣b )=2a ﹣2b . ∴CD =AB ﹣(AC +BD )=a ﹣(2a ﹣2b )=2b ﹣a . 故选:A .【变式2-2】(2021秋•奉化区校级期末)两根木条,一根长10cm ,另一根长12cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( ) A .1cmB .11cmC .1cm 或11cmD .2cm 或11cm【解题思路】设较长的木条为AB ,较短的木条为BC ,根据中点定义求出BM 、BN 的长度,然后分两种情况:①BC 不在AB 上时,MN =BM +BN ,②BC 在AB 上时,MN =BM ﹣BN ,分别代入数据进行计算即可得解.【解答过程】解:如图,设较长的木条为AB =12cm ,较短的木条为BC =10cm , ∵M 、N 分别为AB 、BC 的中点, ∴BM =6cm ,BN =5cm ,①如图1,BC 不在AB 上时,MN =BM +BN =6+5=11cm , ②如图2,BC 在AB 上时,MN =BM ﹣BN =6﹣5=1cm , 综上所述,两根木条的中点间的距离是1cm 或11cm , 故选:C .【变式2-3】(2021秋•江岸区校级月考)如图,点M 在线段AN 的延长线上,且线段MN =20,第一次操作:分别取线段AM 和AN 的中点M 1,N 1;第二次操作:分别取线段AM 1和AN 1的中点M 2,N 2;第三次操作:分别取线段AM 2和AN 2的中点M 3,N 3;……连续这样操作10次,则每次的两个中点所形成的所有线段之和M 1N 1+M 2N 2+…+M 10N 10=( )A .20(12+122+123+⋯+1210) B .20+1029 C .20−10210 D .20+10210 【解题思路】根据线段中点定义先求出M 1N 1的长度,再由M 1N 1的长度求出M 2N 2的长度,从而找到M n N n 的规律,即可求出结果.【解答过程】解:∵线段MN =20,线段AM 和AN 的中点M 1,N 1, ∴M 1N 1=AM 1﹣AN 1 =12AM −12AN =12(AM ﹣AN )=12MN=12×20 =10.∵线段AM 1和AN 1的中点M 2,N 2; ∴M 2N 2=AM 2﹣AN 2 =12AM 1−12AN 1 =12(AM 1﹣AN 1) =12M 1 N 1=12×12×20 =122×20 =5. 发现规律: M n N n =12n ×20 ∴M 1N 1+M 2N 2+…+M 10N 10 =12×20+122×20+123×20+⋯+1210×20 =20(12+122+123+⋯+1210)故选:A .【题型3 线段n 等分点的有关计算】【例3】(2021春•东平县期末)如图,已知AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间的距离是10cm ,则AB 的长是 12cm .【解题思路】设BD =x ,则AB =3x ,CD =4x ,由中点的定义可得EF =12(3x +4x )=10,即可求解x 值,进而可求得AB 的长. 【解答过程】解:设BD =x ,∵BD=13AB=14CD,∴AB=3x,CD=4x,∵线段AB,CD的中点E,F之间的距离是10cm,∴EF=BE+BF=12AB+12CD﹣BD=12(AB+CD)﹣BD=12(3x+4x)﹣x=10cm,解得x=4,∴AB=3x=12(cm).故答案为12cm.【变式3-1】(2021春•奉贤区期末)如图,已知BD=16cm,BD=25AB,点C是线段BD的中点,那么AC=32cm.【解题思路】先由BD=16cm,BD=25AB知AB=52BD=40cm,再由点C是线段BD的中点知BC=12BD=8cm,根据AC=AB﹣BC求解可得答案.【解答过程】解:∵BD=16cm,BD=25AB,∴AB=52BD=52×16=40(cm),又∵点C是线段BD的中点,∴BC=12BD=8cm,则AC=AB﹣BC=40﹣8=32(cm),故答案为:32.【变式3-2】(2021秋•宝鸡期末)如图,P是线段AB上一点,AB=12cm,M、N两点分别从P、B出发以1cm/s、3cm/s的速度同时向左运动(M在线段AP上,N在线段BP上),运动时间为ts.(1)若M、N运动1s时,且PN=3AM,求AP的长;(2)若M、N运动到任一时刻时,总有PN=3AM,AP的长度是否变化?若不变,请求出AP的长;若变化,请说明理由;(3)在(2)的条件下,Q是直线AB上一点,且AQ=PQ+BQ,求PQ的长.【解题思路】(1)由AM+MP+PN+BN=AB,列出方程可求AM的长,即可求解;(2)由线段的和差关系可求解;(3)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系.【解答过程】解:(1)根据M、N的运动速度可知:BN=3cm,PM=1cm,∵AM+MP+PN+BN=AB,且PN=3AM,∴AM+1+3AM+3=12,∴AM=2cm,∴AP=3cm;(2)长度不发生变化,理由如下:根据M、N的运动速度可知:BN=3PM,∵AM+MP+PN+BN=AB,且PN=3AM,∴4AM+4PM=12,∴AP=3cm,(3)如图:∵AQ=PQ+BQ,AQ=AP+PQ,∴AP=BQ,∴PQ=AB﹣AP﹣BQ=6cm;当点Q'在AB的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=12cm.综上所述,PQ=6cm或12cm.【变式3-3】(2021秋•甘井子区期末)已知,点D是射线AB上的点,线段AB=4a,BD =nAB(0<n<1),点C是线段AD的中点.(1)如图1,若点D在线段AB上,当a=1,n=12时,求线段CD的长;(2)如图2,若点D在线段AB的延长线上,当n=12时,求线段CD的长;(用含a的式子表示)(3)若点D在射线AB上,请直接写出线段CD的长2a﹣2na或2a+2na.(用含a 和n的式子表示)【解题思路】(1)根题意求得AB与BD的长,利用线段间数量关系求得AD的长,然后根据线段中点定义求CD的长;(2)解题思路同第(1)问;(3)利用(1)(2)问的解题思路,分点D在线段AB和AB延长线上两种情况分类解答.【解答过程】解:(1)∵a =1,n =12, ∴AB =4a =4, BD =nAB =12AB =2, ∴AD =AB ﹣BD =4﹣2=2, ∵点C 是线段AD 的中点, ∴CD =12AD =1. (2)∵n =12,AB =4a , ∴BD =nAB =12AB =2a , ∴AD =AB +BD =4a +2a =6a , ∴CD =12AD =3a .(3)①当点D 在线段AB 上时, ∵AB =4a ,BD =nAB =4na , ∴AD =AB ﹣BD =4a ﹣4na ,∴CD =12AD =12(4a ﹣4na )=2a ﹣2na . ②当点D 在线段AB 延长线上时, ∵AB =4a ,BD =nAB =4na , ∴AD =AB +BD =4a +4na ,∴CD =12AD =12(4a +4na )=2a +2na . 综上,线段CD 的长为:2a ﹣2na 或2a +2na . 故答案为:2a ﹣2na 或2a +2na . 【题型4 线段的数量关系】【例4】(2021秋•江门期末)如图,点B 在线段AC 上,D 是AC 的中点.若AB =a ,BC =b ,则BD =( )A .12b −12a B .12a −12b C .b −12aD .a −12b【解题思路】根据已知条件可得AC =AB +BC =a +b ,由D 是AC 的中点,可得CD =12AC ,由题意可知BD =BC ﹣CD ,代入计算即可得出答案. 【解答过程】解:∵AB =a ,BC =b , ∴AC =AB +BC =a +b , ∵D 是AC 的中点,∴CD =12AC =12a +12b , ∵BC =b ,∴BD =BC ﹣CD =b ﹣(12a +12b )=12b −12a .故选:A .【变式4-1】(2021秋•沙湾区期末)如图,已知A ,B ,C ,D 是同一直线上的四点,看图填空:AC = AB +BC ,BD =AD ﹣ AB ,AC < AD .【解题思路】从图上可以直观的看出各线段的关系及大小.【解答过程】解:由图可知各线段的关系为AC =AB +BC ,BD =AD ﹣AB ,AC <AD . 故答案为AB ;AB ;AD .【变式4-2】(2021春•莱阳市期末)线段AB 的长为2cm ,延长AB 到点C ,使AC =3AB ,再延长BA 到点D ,使BD =2BC ,则线段CD 的长为 12 cm . 【解题思路】根据已知分别得出BC ,AD 的长,即可得出线段CD 的长.【解答过程】解:∵线段AB =2cm ,延长AB 到C ,使AC =3AB ,再延长BA 至D ,使BD =2BC ,∴BC =2AB =4cm ,BD =4AB =8cm , ∴AD =BD ﹣AB =3AB =6cm∴CD =AD +AB +BC =6+2+4=12(cm ), 故答案为:12.【变式4-3】(2021秋•成都期末)已知点C 在线段AB 上,AC =2BC ,点D ,E 在直线AB 上,点D 在点E 的左侧.若AB =15,DE =6,线段DE 在线段AB 上移动. ①如图1,当E 为BC 中点时,求AD 的长;②点F (异于A ,B ,C 点)在线段AB 上,AF =3AD ,CF =3,求AD 的长;【解题思路】根据已知条件得到BC =5,AC =10,①由线段中点的定义得到CE =2.5,求得CD =3.5,由线段的和差得到AD =AC ﹣CD =10﹣3.5=6.5;②如图1,当点F 在点C 的右侧时,当点F 在点C 的左侧时,由线段的和差即可得到结论;【解答过程】解:∵AC =2BC ,AB =15,∴BC =5,AC =10, ①∵E 为BC 中点, ∴CE =2.5, ∵DE =6, ∴CD =3.5,∴AD =AC ﹣CD =10﹣3.5=6.5; ②如图1,当点F 在点C 的右侧时, ∵CF =3,BC =5, ∴AF =AC +CF =13, ∴AD =13AF =133; 当点F 在点C 的左侧时,∵AC =10,CF =3, ∴AF =AC ﹣CF =7, ∴AF =3AD =7, ∴AD =73;综上所述,AD 的长为133或73;【题型5 两点之间线段最短】【例5】(2021春•莱州市期末)如图,A ,C 两村相距6km ,B ,D 两村相距5km .现要建一个自来水厂,使得该厂到四个村的距离之和最小.下列说法正确的是( )A .自来水厂应建在AC 的中点B .自来水厂应建在BD 的延长线上C .自来水厂到四个村的距离之和最小为11kmD .自来水厂到四个村的距离之和可能小于11km【解题思路】根据线段的性质:两点之间,线段最短;结合题意,要使自来水厂与四个村的距离之和最小,就要使它在AC与BD的交点处.【解答过程】解:如图所示,连接AC,BD交于点E,在平面内任取一点E',连接AE',BE',CE',DE',∵AE'+CE'≥AC,BE'+DE'≥BD,∴AE'+CE'+BE'+DE'≥BD+AC=11km,∴当自来水厂建在点E处时,来水厂到四个村的距离之和最小为11km,故选:C.【变式5-1】(2021秋•丛台区校级期末)下列生活,生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着直线AB架设;④把弯曲的公路改直,就能缩短路程,其中可用“两点确定一条直线”来解释的现象有()A.①②B.①③C.②④D.③④【解题思路】①②根据“两点确定一条直线”解释,③④根据两点之间线段最短解释.【解答过程】解:①用两个钉子就可以把木条固定在墙上,②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线根据“两点确定一条直线”,故选:A.【变式5-2】(2021秋•兴义市期末)如图,一只蚂蚁从长方体的一个顶点A沿表面爬行到顶点C处,有多条爬行线路,其中沿AC爬行一定是最短路线,其依据的数学道理是两点之间,线段最短.【解题思路】根据连接两点的所有线中,线段最短的公理解答.【解答过程】解:∵蚂蚁从长方体的一个顶点A沿表面爬行到顶点C处有多条爬行线路,只有AC是直线段,∴沿AC爬行一定是最短路线,其科学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.【变式5-3】(2021秋•渠县期末)知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?【解题思路】因为教学楼和图书馆处于同一条直线上,两点之间线段最短;连接AB,使AB两点同在一条直线上,与河流的交点既是最佳位置.【解答过程】解:情景一:因为教学楼和图书馆处于同一条直线上,两点之间的所有连线中,线段最短;情景二:(需画出图形,并标明P点位置)理由:两点之间的所有连线中,线段最短.赞同情景二中运用知识的做法.应用数学知识为人类服务时应注意应用数学不能以破坏环境为代价.【题型6 两点间的距离】【例6】(2021秋•罗湖区校级期末)如果在数轴上的A、B两点所表示的有理数分别是x,y,且|x|=3,|y|=1,则A,B两点间的距离是()A.4B.2C.4或2D.以上都不对【解题思路】先根据绝对值的性质求出x,y的值,再分两种情况讨论,当x与y是同号时和x与y是异号时,然后根据距离公式即可求出答案.【解答过程】解:∵|x |=3,∴x =±3,∵|y |=1,∴y =±1,∴当x 与y 是同号时,A 、B 两点间的距离是2;当x 与y 是异号时,A 、B 两点间的距离是4;∴A 、B 两点间的距离是2或4;故选:C .【变式6-1】(2021秋•奉化区校级期末)如图,已知点A 、点B 是直线上的两点,点C 在线段AB 上,且BC =4厘米.点P 、点Q 是直线上的两个动点,点P 的速度为1厘米/秒,点Q 的速度为2厘米/秒.点P 、Q 分别从点C 、点B 同时出发在直线上运动,则经过多少时间线段PQ 的长为5厘米.【解题思路】由于BC =4厘米,点P 、Q 分别从点C 、点B 同时出发在直线上运动,当线段PQ 的长为5厘米时,可分三种情况进行讨论:①点P 向左、点Q 向右运动;②点P 、Q 都向右运动;③点P 、Q 都向左运动;④点P 向右、点Q 向左运动;都可以根据线段PQ 的长为5厘米列出方程,解方程即可.【解答过程】解:设运动时间为t 秒.①如果点P 向左、点Q 向右运动,由题意,得:t +2t =5﹣4,解得t =13;②点P 、Q 都向右运动,由题意,得:2t ﹣t =5﹣4,解得t =1;③点P 、Q 都向左运动,由题意,得:2t ﹣t =5+4,解得t =9.④点P 向右、点Q 向左运动,由题意,得:2t ﹣4+t =5,解得t =3.综上所述,经过13或1或3秒9秒时线段PQ 的长为5厘米.【变式6-2】(2021秋•秦淮区期末)直线l 上的三个点A 、B 、C ,若满足BC =12AB ,则称点C 是点A 关于点B 的“半距点”.如图1,BC =12AB ,此时点C 就是点A 关于点B 的一个“半距点”.若M 、N 、P 三个点在同一条直线m 上,且点P 是点M 关于点N 的“半距点”,MN =6cm .(1)MP = 3cm 或9 cm ;(2)若点G 也是直线m 上一点,且点G 是线段MP 的中点,求线段GN 的长度.【解题思路】(1)根据点P 是点M 关于点N 的“半距点”,可得PN =12MN ,分两种情况画图求解;(2)根据点G 是线段MP 的中点,结合(1)分两种情况即可求线段GN 的长度.【解答过程】解:(1)如图所示:∵点P 是点M 关于点N 的“半距点”,∴PN =12MN ,①∵MN =6cm .P 1N =12MN =3cm ,∴MP 1=MN ﹣P 1N =3cm ;②∵MN =6cm .P 2N =12MN =3cm ,∴MP 2=MN +P 2N =9cm ;∴MP =3cm 或9cm ;故答案为:3cm 或9;(2)如图所示:①点G 1是线段MP 1的中点,∴MG 1=12MP 1=32cm ,∴G 1N =MN ﹣MG 1=6−32=92(cm );②点G 2是线段MP 2的中点,∴MG 2=12MP 2=92cm ,∴G 2N =MN ﹣MG 2=6−92=32(cm ).∴线段GN 的长度为92cm 或32cm .【变式6-3】(2021秋•姜堰区期末)如图,点C 在线段AB 上,AC =6cm ,CB =4cm ,点M 以1cm /s 的速度从点A 沿线段AC 向点C 运动;同时点N 以2cm /s 从点C 出发,在线段CB上做来回往返运动(即沿C→B→C→B→…运动),当点M运动到点C时,点M、N都停止运动,设点M运动的时间为ts.(1)当t=1时,求MN的长;(2)当t为何值时,点C为线段MN的中点?(3)若点P是线段CN的中点,在整个运动过程中,是否存在某个时间段,使PM的长度保持不变?如果存在,求出PM的长度;如果不存在,请说明理由.【解题思路】(1)当t=1时,AM=1cm,CN=2cm,MN=7cm;(2)由题意,得:AM=tcm,MC=(6﹣t)cm,根据点M运动到点C时,点M、N都停止运动,可得0≤t≤6,分三种情况:①当0≤t≤2时,点N从C向B运动,可求得t =2;②当2<t≤4时,点N从B向C运动,求出t=2不合题意;③当4<t≤6时,点N从C向B运动,可求得t=14 3;(3)存在某个时间段,使PM的长度保持不变,与(2)一样分三种情况分别探究即可.【解答过程】解:(1)当t=1时,AM=1cm,CN=2cm,∴MC=AC﹣AM=6﹣1=5(cm),∴MN=MC+CN=5+2=7(cm);(2)由题意,得:AM=tcm,MC=(6﹣t)cm,∵点M运动到点C时,点M、N都停止运动,∴0≤t≤6,①当0≤t≤2时,点N从C向B运动,CN=2tcm,∵点C为线段MN的中点,∴MC=CN,即6﹣t=2t,解得:t=2;②当2<t≤4时,点N从B向C运动,BN=(2t﹣4)cm,CN=4﹣(2t﹣4)=(8﹣2t)cm,∵点C为线段MN的中点,∴MC=CN,即6﹣t=8﹣2t,解得:t=2(舍去);③当4<t≤6时,点N从C向B运动,CN=(2t﹣8)cm,∵点C为线段MN的中点,∴MC=CN,即6﹣t=2t﹣8,解得:t=14 3;综上所述,当t =2或143时,点C 为线段MN 的中点.(3)如图2,①当0≤t ≤2时,点N 从C 向B 运动,CN =2tcm ,∵点P 是线段CN 的中点,∴CP =12CN =tcm ,∴PM =MC +CP =6﹣t +t =6cm ,此时,PM 的长度保持不变;②当2<t <4时,点N 从B 向C 运动,CN =(8﹣2t )cm ,∵点P 是线段CN 的中点,∴CP =12CN =12(8﹣2t )=(4﹣t ) cm ,∴PM =MC +CP =6﹣t +(4﹣t )=(10﹣2t )cm ,此时,PM 的长度变化;③当4≤t ≤6时,点N 从C 向B 运动,CN =(2t ﹣8)cm ,∵点P 是线段CN 的中点,∴CP =12CN =12(2t ﹣8)=(t ﹣4)cm ,∴PM =MC +CP =6﹣t +(t ﹣4)=2cm ,此时,PM 的长度保持不变;综上所述,当0≤t ≤2或4≤t ≤6时,使PM 的长度保持不变;PM 的长度分别为6cm 或2cm .【题型7 简单的线段的长短比较】【例7】(2021秋•攀枝花校级期中)从A 地到B 地有两条路,第一条从A 地直接到B 地,第二条从A 地经过C ,D 到B 地,两条路相比,第一条的长度 = 第二条的长度(填“<”“>”“=”)【解题思路】由图可得,大圆的直径为小圆直径的3倍,根据周长C =πd 求出半圆的周长,然后对两个路径进行比较即可.【解答过程】解:设小圆的直径为d ,则大圆的直径为3d ,则第一条线路的长度为:π•3d ÷2=1.5πd ,第二条线路的 长度为:3πd ÷2=1.5πd ,故这两条线路长度一样.故答案为:=.【变式7-1】(2021秋•双流区期末)体育课上,小明在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q【解题思路】比较线段OM、ON、OP、OQ的长短即可.【解答过程】解:由点M、N、P、Q所在扇形区域中的位置可知,OP>ON>OQ>OM,故选:C.【变式7-2】(2021秋•南海区期末)我们知道,比较两条线段的长短有两种方法:一种是度量法,是用刻度尺量出它们的长度,再进行比较;另一种方法是叠合法,就是把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较.(1)已知线段AB,C是线段AB上一点(如图①).请你应用叠合法,用尺规作图的方法,比较线段AC与BC的长短,并简单说明理由(要求保留作图痕迹);(2)如图②,小明用刻度尺量得AC=4cm,BC=3cm,若D是AC的中点,E是BC的中点,求DE的长.【解题思路】(1)先以点A为圆心,以BC的长为半径画圆,此圆与直线AB相交于点B′,则线段AB′的即为线段BC的长;(2)先根据D是AC的中点,E是BC的中点求出CD及CE的长,故可得出结论.【解答过程】解:(1)如图所示:;(2)∵AC=4cm,BC=3cm,D是AC的中点,E是BC的中点,∴CD=12AC=12×4=2cm,CE=12BC=12×3=1.5cm,∴DE=CD+CE=2+1.5=3.5cm.【变式7-3】(2021秋•宁波期末)已知数轴上的三点A、B、C所对应的数a、b、c满足a <b<c、abc<0和a+b+c=0.那么线段AB与BC的大小关系是()A.AB>BC B.AB=BC C.AB<BC D.不确定的【解题思路】先根据a<b<c、abc<0和a+b+c=0判断出a、b、c的符号及关系,再根据数轴上两点间的距离比较出线段AB与BC的大小即可.【解答过程】解:∵a<b<c,abc<0,a+b+c=0,∴a<0,b>0,c>0,|a|=b+c,∴AB=|a﹣b|=b﹣a>|a|,BC=|b﹣c|=c﹣b<|a|,∴AB>BC.故选:A.【题型8 与线段的长短比较有关的应用】【例8】(2021秋•南沙区期末)如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处【解题思路】根据题意分别计算停靠点分别在各点时员工步行的路程和,选择最小的即可解答【解答过程】解:当停靠点在A区时,所有员工步行到停靠点路程和是:20×1500+45×2500=142500m;当停靠点在B区时,所有员工步行到停靠点路程和是:15×1500+45×1000=67500m;当停靠点在C区时,所有员工步行到停靠点路程和是:15×2500+20×1000=57500m;当停靠点在D区时,设距离B区x米,所有员工步行到停靠点路程和是:15×(1500+x)+20x+45(1000﹣x)=﹣10x+67500,由于k=﹣10,所以,x越大,路程之和越小,∴当停靠点在C区时,所有员工步行到停靠点路程和最小.故选:C.【变式8-1】(2021秋•海淀区校级期中)如图,在公路MN两侧分别有A1,A2…A7,七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③【解题思路】可结合题意及图,直接对三个选项本身进行分析,确定对错.【解答过程】解:①通过测量发现车站的位置设在C点好于B点,故正确;②车站设在B点与C点之间公路上,车站朝M方向始终有4个工厂,车站朝N方向始终有3个工厂,所以在这一段任何一点,效果一样,故错误;③工厂到车站的距离是线段的长,和各段的弯曲的小公路无关,故正确;故选:C.【变式8-2】一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼150米处.【解题思路】假设车站距离1号楼x米,然后运用绝对值表示出总共的距离,继而分段讨论x的取值去掉绝对值,根据数的大小即可得出答案.【解答过程】解:假设车站距离1号楼x米,则总距离S=|x|+2|x﹣50|+3|x﹣100|+4|x﹣150|+5|x﹣200|,①当0≤x≤50时,S=2000﹣13x,最小值为1350;②当50≤x≤100时,S=1800﹣9x,最小值为900;②当100≤x≤150时,S=1200﹣3x,最小值为750(此时x=150);当150≤x≤200时,S=5x,最小值为750(此时x=150).∴综上,当车站距离1号楼150米时,总距离最小,为750米.故答案为:150.【变式8-3】(2021•烟台)先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.【解题思路】(1)分n为偶数时,n为奇数时两种情况讨论P应设的位置.(2)根据绝对值的几何意义,找到1和617正中间的点,即可求出|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.【解答过程】解:(1)当n为偶数时,P应设在第n2台和(n2+1)台之间的任何地方,当n为奇数时,P应设在第n+12台的位置.(2)根据绝对值的几何意义,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣617|的最小值就是在数轴上找出表示x的点,使它到表示1,617各点的距离之和最小,根据问题1的结论,当x=309时,原式的值最小,最小值是308+307+…+1+1+2+…+308=95172.。
线段的长短比较教案一、教学目标1. 让学生掌握线段的定义及基本属性。
2. 培养学生观察、比较、推理的能力,提高空间想象力。
3. 培养学生合作学习、积极参与的精神。
二、教学内容1. 线段的定义及基本属性。
2. 比较线段的长短。
三、教学重点与难点1. 教学重点:线段的定义及基本属性,线段的比较方法。
2. 教学难点:如何准确、快速地比较线段的长短。
四、教学方法1. 采用直观演示法,让学生通过观察、操作,理解线段的定义及基本属性。
2. 采用比较法,让学生通过实践操作,掌握线段的长短比较方法。
3. 采用小组合作学习,培养学生的团队协作能力。
五、教学准备1. 教具:线段模型、直尺、画图工具。
2. 学具:每位学生准备一套线段模型、直尺、画图工具。
六、教学过程1. 导入新课:通过复习上节课的内容,引出本节课的主题——线段的长短比较。
2. 讲解线段的定义及基本属性:线段的定义,线段的长度、起点和终点。
3. 演示线段的长短比较方法:通过直观演示,让学生掌握比较线段长短的方法。
4. 实践操作:学生分组进行线段长短比较的实践操作,教师巡回指导。
七、课堂练习1. 让学生独立完成线段长短比较的练习题,巩固所学知识。
2. 教师选取部分学生的作品进行展示,评价学生的学习效果。
八、拓展延伸1. 引导学生思考:线段的长短比较在实际生活中的应用。
2. 学生分享生活实例,加深对线段长短比较知识的理解。
九、课堂小结2. 强调线段长短比较在实际生活中的重要性。
十、课后作业1. 让学生完成课后练习题,巩固线段长短比较的知识。
2. 鼓励学生在生活中观察、运用线段长短比较的知识。
六、教学活动1. 小组讨论:让学生分组讨论线段在实际生活中的应用,例如测量物品长度、规划路线等。
2. 分享成果:每组选取一名代表分享讨论成果,其他组成员可进行补充。
七、案例分析1. 教师展示线段长短比较在实际案例中的应用,如建筑设计、电路布线等。
2. 学生分析案例中线段长短比较的方法和原理。
线段的长短比较【学习目标】1、进一步理解线段长度比较的意义。
2、会用度量法、叠合法比较线段的长短3、通过若干的实例应用掌握“两点之间线段最短”的基本事实4、会用尺规作线段(要求保留作图痕迹和结论,作法过程不需写出)。
【重点难点】重点:线段长度大小的概念及比较方法难点:利用“圆规”叠合法比较的意义【学习过程】一、引入部分1、教师出示两根绳子,(长度比较明显)提出问题,学生口答为主。
(1)你有几种方法(2)简要解释你的数学原理方法。
(教师补充叠合法的注意点)2、若将绳子抽象成线段,如何比较线段的长短,提出课题二、线段长度大小的意义自学课本P147,完成下列问题:1、线段大小就是指线段的长度大小2、如图,(1)请用刻度尺量出它们的长度。
AB= cm ;AC= cm ;BC= cm(2)从数值上看,它们的关系如何,用“=”、“>”或“<”填空 AB AC;AC BC;BC AB3、线段比较的方法有两种分别是:(1) 度量法 (2) 叠合法 (教师需要对利用圆规叠合法比较的原理加以解释分三种情况说明)4、巩固练习:见课本P148的做一做部分2三、掌握“尺规作图”法,作一条线段等于已知线段。
(教师讲解例题)练习要求:用直尺与圆规作一条线段AB 等于已知线段m ,写出结论,保留作图痕迹。
Bm作法:(1)任意画一条射线AC(2)用圆规量取已知线段m的长度(3)在射线AC上截取AB=m线段AB就是所求作的线段.四、掌握线段的基本事实请认真观察课本P148的图6-15、6-16,(1)发现的线段基本事实是在所有连接两点的线中,线段最短,简单地说“两点之间线段最短”。
(2)两点间的距离是指连结两点的线段的长度。
(3)请举出生活生产实践中有关上述基本事实的实例一个。
五、当堂检测:1、村庄A, B之间有一条河流,要在河流上建造一座大桥P, 为了使村庄A, B之间的距离最短,请问:这座大桥P应建造在哪里。
为什么请画出图形。
初一数学《比较线段的长短》知识点精讲知识点总结1、线段的性质:两点之间,线段最短。
2、两点之间的距离:两点之间线段的长度叫做两点之间的距离。
3、比较线段长短的方法:(1)目测法;(2)度量法;(3)叠合法4、线段的中点:在线段上,到线段两个端点距离相等的点叫做线段的中点。
5、尺规作图:用没有刻度的直尺和圆规作图6、用尺规作线段:(1)作一条线段等于已知线段;(2)作一条线段等于已知线段的二倍;(3)作一条线段等于已知线段的和或差。
其方法是相同的,都是先画一条射线,然后用圆规在射线上截取即可,注意保留作图痕迹,画完图形后写出总结“某某线段即为所求作的线段”。
尺规作图的定义:仅用圆规和没有刻度的直尺作图的方法叫做尺规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.线段的中点:如下图,若点B在线段AC上,且把线段AC分成相等的两条线段AB与BC,这时点B叫做线段AC的中点.3. 用尺规作线段或比较线段(1)作一条线段等于已知线段:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.要点诠释:几何中连结两点,即画出以这两点为端点的线段.(2)线段的比较:叠合比较法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.如下图:要点诠释:线段的比较方法除了叠合比较法外,还可以用度量比较法.如图所示,在一条笔直公路a的两侧,分别有A、B两个村庄,现要在公路a上建一个汽车站C,使汽车站到A、B两村的距离之和最小,问汽车站C的位置应如何确定?【答案与解析】解:如图,连接AB与直线a交于点C,这个点C的位置就是符合条件的汽车站的位置.【总结升华】“两点之间线段最短”在实际生活中有广泛的应用,此类问题要与线段的性质联系起来,这里线段最短是指线段的长度最短,连接两点的线段的长度叫做两点间的距离,线段是图形,线段长度是数值.举一反三:【变式】(1)如图1所示,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.【答案】解:(1)河道的长度变小了.(2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.思维导图教学设计一、教材分析:1、教材的地位和作用本节课是教材第五章《平面图形及其位置关系》的第二节,是平面图形的重要的基础知识。
第四章基本平面图形4.2比较线段的长短教学设计一、教学目标1.了解“两点之间的所有连线中,线段最短”.2.能借助直尺、圆规等工具比较两条线段的长短.3.能用圆规作一条线段等于已知线段.4.知道中点的定义,会用符号表示中点.二、教学重点及难点重点:比较线段的方法,线段的公理,线段中点的概念.难点:比较线段的方法以及线段的中点理解和应用.三、教学准备圆规、直尺四、相关资源相关图片五、教学过程【问题情境】创设情境,提出问题师生活动:教师利用课件展示以上的图片,并回答问题:观察以上图片,谁的身高更高?哪棵树高?哪支铅笔长?窗框相邻的两条边哪条边长?设计意图:七年级学生的学习带有强烈的情感色彩,对于熟悉的情境、感兴趣的问题能够很容易的展开思维.利用姚明、李连杰的明星效应,把现实生活中的娱乐问题转化为数学活动的几何图形,让学生体会到“快乐数学”.在生活中我们经常会比较物体的长短,那么究竟可以概括为哪些方法,我们通过研究线段的长短进行探究.板书:4.2比较线段的长短【新知讲解】合作交流,探索新知探究一:比较线段长短的方法活动1.两名同学演示比较身高.活动2.归纳总结:方法一:目测法比较线段的长短:方法二:用度量法比较线段的长短:用刻度尺分别量出线段AB和线段CD的长度,将长度进行比较.方法三:叠合法比较线段的长短:步骤:(1)将线段AB的端点A与线段CD的端点C重合;(2)线段AB沿着线段CD的方向落下;(3)若端点B与端点D重合,则得到线段AB等于线段CD,可以记作AB=CD.若端点B落在C,D之间,则得到线段AB小于线段CD,可以记作AB<CD.若端点B落在D外,则得到线段AB大于线段CD,可以记作AB>CD.设计意图:学生通过亲身实践,感受知识的形成过程,培养学生的动手、动脑、动口能力.归纳重叠比较法,进而向学生渗透分类的思想.用度量法比较线段的长短,其实就是比较两个数的大小.从“数”的角度去比较线段的长短,在此活动环节中,教师从数与形这两方面对线段长短的比较进行了说明,这样做既肯定了学生比较的方法,肯定了实际生活中的经验,同时又将生活中的方法科学化,实现了知识的抽象与升华.活动3.作图:画一条线段等于已知线段已知线段a,用直尺和圆规画一条线段,使它等于已知线段a.方法(1)度量法:先量出线段a 的长度,再画出一条等于这个长度的线段AB .方法(2)尺规作图法:尺规作图就是用无刻度的直尺和圆规作图. 第一步:先用直尺画一条射线AC ; 第二步:用圆规在射线AC 上截取AB =a .; 线段AB 及为所求.注意:这里教材上给出了两种画线段等于已知线段的方法,一种是使用刻度尺测量解决,另一种尺规作图,要使学生明白这两种方法的不同之处,并能准确掌握.先让学生自己尝试画,然后教师示范画图并叙述作法,让学生模仿画图,该问题不必要求学生写画法,但最后必须写出结论.设计意图:本环节中教师指导学生作图,在学生动手操作的基础上,向学生初步渗透圆规的作用,为后面学习尺规作图打基础.BA探究二:线段的和差与画法:活动1.如图,线段AB 和AC 的大小关系是怎样的?线段AC 与线段AB 的差是哪条线段?你还能从图中观察出其他线段间的和、差关系吗?师生活动:让学生四人一小组交流、讨论,回答问题.教师关注学生是否认真讨论,能否找出其他线段间的和、差关系.小结:(1)AB <AC ; (2)AC -AB =BC ; AC -BC =AB ; BC +AB =AC .活动2.如图,已知线段a 和线段b ,怎样通过作图得到a 与b 的和、a 与b 的差呢?师生活动:让学生自主学习教材相关内容,然后由一名学生上黑板解答该问题.其他学生在练习本上画一画,教师巡回指导,关注学生画图是否规范,纠正画错的学生,最后师生一起点评.小结:在直线上作线段AB =a ,再在AB 的延长线上作线段BC =b ,线段AC 就是a 与b 的和,记作AC =a +b .CB A ba在直线上作线段AB=a,再在AB上作线段AC=b,线段BC就是a与b的差,记作BC =a-b.设计意图:充分发挥学生的主观能动性,把课堂交给学生,教师只在关键之处进行点拨即可.探究三:线段的中点活动1.通过折纸,探索线段的中点.(1)在一张透明纸上画一条线段AB;(2)对折这张纸,使线段AB的两个端点重合;(3)把纸展开铺平,标明折痕点C.教师:刚才用折纸的方法找出AB的中点C,你还能通过什么方法得到中点C呢?活动2.学生动手演示得到线段中点的方法:度量法、尺规截取法归纳总结:线段中点定义:点C把线段AB分成相等的两部分,则点C叫做线段AB的中点.类似地,还有三等分点、四等分点等.关键点:线段的中点应满足的两个条件:①点M在线段AB上;②AM=BM.线段间的关系:用几何语言表示:因为点C是线段AB的中点,AM=BM=12AB;AB=2AM=2BM.设计意图:以折纸的方法,使学生在动手操作的基础上发现中点问题中所存在的数量关系,在教材中的方法的基础上鼓励学生发现更多的找中点的方法,从而对中点这一重要的数学概念有更好的理解.探究四:基本事实如图,从A地到B地有四条路.问题1:从A地到B地的四条道路中,哪条路最近?,除它们外,能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.问题2:从这个现象中,你能得到什么结论?问题3:你还能举出类似的例子吗?归纳:线段公理:两点的所有连线中,线段最短.简单说成,两点之间,线段最短.连接两点间的线段的长度,叫做这两点间的距离.需要强调两点之间的线段的长度叫两点间的距离,而不是两点间的线段,线段是图形,线段的长度是数值;举例:从A到B架电线,总是尽可能沿着线段AB架设等.设计意图:通过对以上问题的解决,归纳出关于线段的基本事实,培养学生观察、发现问题的能力和归纳总结的能力.【典型例题】例1.(1)在直线上顺次取A,B,C三点,使AB=4cm,BC=3cm,点O是线段AC的中点,则线段OB的长是( A )A. 0.5cmB. 1cmC. 1.5cmD. 2cm分析:由于是顺次取A,B,C三点,所以不用考虑多种情况.(2)如图,若AB=CD,则AC与BD的大小关系为( ).A.AC>BD B.AC<BD C.AC=BD D.不能确定解析:本题可用线段的和、差表示要比较的两条线段,从而判断两条线段的大小关系.因为AB=CD,所以AB+BC=CD+BC.又因为AB+BC=AC,CD+BC=BD,所以AC=BD.答案:C.例2.如图是A,B两地之间的公路,在公路工程改造时,为使A,B两地行程最短,请在图中画出改造后的公路,并说明你的理由.分析:根据“两点之间,线段最短”,可直接连接AB.解:如图,连接AB.理由是:两点之间的所有连线中,线段最短.例3.已知线段a,b(2a>b).用直尺和圆规作一条线段,使这条线段等于2a-b.分析:先作出一条线段等于2a,再在这条线段上截取一条线段等于b,则剩余线段就是所求作线段.作法:①作射线AM(如图);①在射线AM上依次截取AB=BC=a;①在线段AC上截取AD=b.线段DC就是所求作的线段.例4.已知三角形ABC,如图,试比较AC+BC与AB的大小关系.分析:方法一:用刻度尺直接度量三角形三条边,求出AC+BC的长度,就可以与AB比较大小了;方法二:如图,在AB上截取线段AD=AC,再比较BC与BD的大小关系即可.解:经过比较,可以得到:AC+BC>AB.例5.如图,已知点C在线段AB上,线段AC=6 cm,BC=4 cm,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AB=a,其他条件不变,你能猜出MN的长度吗?请表述你发现的规律.分析:(1)线段MN=MC+CN,可先利用已知条件和线段中点的定义分别求出线段MC和线段CN的长;(2)根据线段中点的定义,可知MC+CN=12AC+12BC=12(AC+BC)=12AB,代入后可得到MN的长度.解:(1)因为线段AC=6 cm,BC=4 cm,点M,N分别是AC,BC的中点,所以MC=1 2AC=12×6=3(cm),CN=12BC=12×4=2(cm),MN=MC+CN=3+2=5(cm).(2)MN=12 a.规律:一点将一条线段分成两条线段,则这两条线段中点之间的距离等于原线段长的一半.设计意图:通过练习来发现学生对本节内容的掌握情况,发现学生学习中的问题,及时解决,争取把问题反映在课堂上,在课堂上解决.【随堂练习】1.(1)两点之间线段的长度是(C).A.线段的中点B.线段最短C.两点间的距离D.线段(2)若点P是线段CD的中点,则(B).A.CP=CD B.CP=PD C.CD=PD D.CP>PD(3)在跳大绳比赛中,要在两条大绳中挑出一条最长的绳子参加比赛,选择的方法是(A).A.把两条大绳的一端对齐,然后拉直两条大绳,另一端在外面的即为长绳B .把两条大绳接在一起C .把两条大绳重合观察另一端情况D .没有办法挑选(4)下列图形中能比较大小的是( A ).A .两条线段B .两条直线C .直线与射线D .两条射线 2.在①ABC 中,BC ____AB +AC (填“>”“<”“=”),理由是____.<,两点之间的所有连线中,线段最短.3.直线l 上依次有三点A ,B ,C ,AB ①BC =2①3,如果AB =2厘米,那么AC =___厘米.思路解析:根据比例的性质可得AB ①BC =2①3,BC =3厘米,所以AC =2+3=5厘米. 4.如图所示,已知AB =40,C 是AB 的中点,D 是CB 上的一点,E 是DB 的中点,CD =6,求ED 的长.解:①C 是AB 的中点,①AB =2BC .①AB =40,①BC =20.①BD =BC -CD ,CD =6,①BD =14. ①E 是DB 的中点, ①ED =7(厘米).5.已知线段AB =8 cm ,在直线AB 上有一点C ,且BC =4cm ,M 是线段AC 的中点,求线段AM 的长.思路解析:本题是关于中点的计算以及分类讨论的问题,题中只说明A ,B ,C 三点共线,但无法判断点C 是在线段AB 上,还是在AB 的延长线上,所以要分情况讨论.(1)解:第(1)种情况,如图(1),当点C 在线段AB 上时, 因为M 是AC 的中点, 所以AM =21AC . 因为AC =AB -BC =8-4=4 cm ,所以AM =21AC =21×4=2 cm .(2)第(2)种情况,如图(2),当点C 在线段AB 的延长线上时, 因为点M 是AC 的中点, 所以AM =21AC . 因为AC =AB +BC =8+4=12 cm , 所以AM =21AC =21×12=6 cm . 所以AM 的长度为2 cm 或6 cm .六、课堂小结这节课你学到了什么? (1)线段长短比较的方法; (2)画一条线段等于已知线段; (3)线段的和、差的概念及画法; (4)两点间距离的概念;(5)线段的性质“两点间线段最短”及应用; (6)线段的中点的概念及简单的应用.师生活动:教师鼓励学生先自述学会了什么,然后找几位学生谈收获和体会. 设计意图:培养学生自我总结、自我评价能力,学会把零散的知识进行整理和优化,完善自己的知识构建.七、板书设计。
线段长短的比较与运算完整版精品课件一、教学内容本节课主要涉及教材第3章“平面几何初步”中的第2节“线段的长短比较与运算”。
详细内容包括:线段的定义、线段长度的度量方法、线段长短的比较、线段长度的加法和减法运算、线段等分的概念及其应用。
二、教学目标1. 理解线段的概念,掌握线段长度的度量方法,能够准确地比较线段的长短。
2. 学会线段长度的加法和减法运算,能够解决实际问题中的线段运算。
3. 掌握线段等分的概念,能够运用等分知识解决实际问题。
三、教学难点与重点重点:线段长短的比较,线段长度的加法和减法运算,线段等分的概念及应用。
难点:线段长短的比较方法,线段运算在实际问题中的应用。
四、教具与学具准备教具:多媒体课件、黑板、粉笔、直尺、圆规。
学具:直尺、圆规、练习本。
五、教学过程1. 实践情景引入:通过展示实际生活中线段长短比较的例子(如测量绳子、比较两条道路的长度等),引导学生认识到线段长短比较的重要性。
2. 知识讲解:(1)线段的定义:介绍线段的概念,强调线段的两个端点及线段的有限性。
(2)线段长度的度量方法:讲解如何使用直尺、圆规等工具测量线段长度。
(3)线段长短的比较:介绍比较线段长短的方法,如直接测量、间接比较等。
(4)线段长度的加法和减法运算:讲解线段长度运算的法则,结合实际例题进行分析。
(5)线段等分的概念及其应用:介绍线段等分的定义,讲解等分线段的方法及应用。
3. 例题讲解:选取具有代表性的例题,详细讲解解题思路和步骤。
4. 随堂练习:布置一些与教学内容相关的练习题,让学生当堂完成,巩固所学知识。
六、板书设计1. 线段的定义2. 线段长度的度量方法3. 线段长短的比较4. 线段长度的加法和减法运算5. 线段等分的概念及其应用6. 例题及解题步骤七、作业设计1. 作业题目:(2)已知线段MN=10cm,PQ=3cm,求线段MP和NQ的长度。
(3)将一条线段AB等分为5份,求每份的长度。
2. 答案:(1)CD>EF>AB(2)MP=7cm,NQ=3cm(3)每份长度为2cm八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入、例题讲解、随堂练习等方式,使学生掌握了线段长短比较和运算的方法。
专题4.2 比较线段的长短【十大题型】【北师大版】【题型1 线段中点的有关计算】 (1)【题型2 线段的和差】 (4)【题型3 线段的数量关系】 (8)【题型4 简单线段的长短比较】 (11)【题型5 两点间的距离】 (15)【题型6 线段n等分点的有关计算】 (18)【题型8 线段中的动点问题】 (26)【题型9 尺规作线段】 (31)【题型10 线段中的对折问题】 (33)【知识点比较线段的长短】(1)两点的所有连线中,线段最短。
简称:两点之间,线段最短。
连接两点间的线段的长度,叫做这两点的距离。
(2)线段的中点:线段上的一个点把线段分成相等的两条线段,这个点叫做线段的中点.【题型1线段中点的有关计算】【例1】(2023春·山东烟台·七年级统考期中)已知线段AB=12cm,点C为直线AB上一点,且AC=4cm,点D为线段BC的中点,则线段AD的长为( )A.4cm B.8cm C.4cm或6cm D.4cm或8cm【答案】D【分析】分两种情况考虑:点C在线段AB上,点C以线段BA的延长线上;利用中点的意义及线段的和差关系即可求得线段AD的长.【详解】①当点C在线段AB上时,如图则BC=AB−AC=12−4=8(cm)∵点D为线段BC的中点BC=4cm∴CD=12∴AD=AC+CD=4+4=8(cm)②点C以线段BA的延长线上时,如图则BC=AB+AC=12+4=16(cm)∵点D为线段BC的中点BC=8cm∴CD=12∴AD=CD−AC=8−4=4(cm)综上所述,AD的长为4cm或8cm故选:D【点睛】本题考查了中点的含义、线段的和差运算,注意分类讨论.【变式1-1】(2023秋·福建三明·七年级统考期中)如图,C是AB的中点,点D,E分别在AC,BC上,且AD+BE=8,AE+BD=12,则CB的长为.【答案】5【分析】由线段和差关系可求DE,AB,由中点的性质可求解.【详解】解:∵AD+BE+DE=AB,AE+BD−DE=AB,∴8+DE=AB,12−DE=AB,∴DE=2,AB=10,∵C是AB的中点,∴CB=1AB=5.2故答案为:5.【点睛】本题考查了线段和差与中点的性质和应用,熟练掌握线段和差倍分的计算是解题的关键.【变式1-2】(2023秋·山东德州·七年级统考期末)如图,已知点C为线段AB上一点,AC=12cm,CB=8 cm,D、E分别是AC、AB的中点.求:(1)求AD 的长度;(2)求DE 的长度;(3)若M 在直线AB 上,且MB =6cm ,求AM 的长度.【答案】(1)6cm (2)4cm (3)26cm 或14cm【分析】(1)直接根据D 是AC 的中点可得答案;(2)先求出AB 的长,然后根据E 是AB 的中点求出AE ,做好应AE−AD 即为DE 的长;(3)分M 在点B 的右侧、M 在点B 的左侧两种情况进行计算即可.【详解】(1)解:由线段中点的性质AD =12AC =12×12=6cm ;(2)由线段的和差,得AB =AC +BC =12+8=20cm ,由线段中点的性质,得AE =12AB =12×20=10cm ,由线段的和差,得DE =AE−AD =10−6=4cm ;(3)当M 在点B 的右侧时,AM =AB +MB =20+6=26cm ,当M 在点B 的左侧时,AM =AB−MB =20−6=14cm ,∴AM 的长度为26cm 或14cm .【点睛】本题考查了关于线段的中点的计算,线段的和与差的计算,读懂题意熟练运用线段的和差倍分是解本题的关键.【变式1-3】(2023秋·江苏徐州·七年级校考期末)如图,点M 在线段AN 的延长线上,且线段MN =10,第一次操作:分别取线段AM 和AN 的中点M 1、N 1;第二次操作:分别取线段AM 1和AN 1的中点M 2,N 2;第三次操作:分别取线段AM 2和AN 2的中点M 3,N 3;…连续这样操作2023次,则每次的两个中点所形成的所有线段之和M 1N 1+M 2N 2+⋅⋅⋅+M 2023N 2023=( )A .10+522022B .10+522023C .10−522022D .10−522023【答案】C【分析】根据MN =10,M 1、N 1分别为AM 、AN 的中点,求出M 1N 1的长度,再由M 1N 1的长度求出M 2N 2的长度,找到M n N n 的规律即可求出M 1N 1+M 2N 2+⋅⋅⋅+M 2023N 2023的值.【详解】解:∵MN =10,M 1、N 1分别为AM 、AN 的中点,∴M 1N 1=AM 1−AN 1=12AM−12AN =12(AM−AN )=12MN =12×10=5,∵M 2、N 2分别为AM 1、A N 1的中点,∴M 2N 2=AM 2−AN 2=12AM 1−12AN 1=12(AM 1−AN 1)=12M 1N 1=12×5=52,∵M 3、N 3分别为AM 2、A N 2的中点,∴M 3N 3=AM 3−AN 3=12AM 2−12AN 2=12(AM 2−AN 2)=12M 2N 2=12×52=522,……由此可得:M n N n =52n−1,∴M 1N 1+M 2N 2+⋯+M 2023N 2023=5+52+522+⋯+522022=10×+122+⋯=10×1−=10−522022,故选C .【点睛】本题考查线段中点的有关计算,有理数的简便运算,相对较难,根据题意找出规律是解题的关键.【题型2 线段的和差】【例2】(2023秋·江西上饶·七年级统考期末)如图,C 、D 是线段AB 上两点,M 、N 分别是线段AD 、BC 的中点,下列结论:①若AD =BM ,则AB =3BD ;②若AC =BD ,则AM =BN ;③AC−BD =2(MC−DN );④2MN =AB−CN .其中正确的结论是( )A .①②③B .③④C .①②④D .①②③④【答案】A【分析】根据线段中点的定义与线段的和差结合图形逐一进行分析即可.【详解】解:如图, ∵M 、N 分别是线段AD 、BC 的中点,∴AM =MD =12AD ,CN =BN =12BC ,∵AD =BM ,∴AD =MD +BD , ∴AD =12AD +BD , ∴AD =2BD ,∴AD +BD =2BD +BD =3BD ,即AB =3BD ,故①符合题意; ∵AC =BD , ∴AD =BC , ∴12AD =12BC ,∴AM =BN ,故②符合题意;∵AC−BD =AD−CD−BD =AD−(CD +BD )=AD−BC ,∴AC−BD =2MD−2CN =2(MD−CN )=2(MC +CD−CD−DN )=2(MC−DN ) ,故③符合题意; ∵2MN =2MC +2CN ,MC =MD−CD ,∴2MN =2(MD−CD )+2CN =2(MD +CN−CD ), ∵MD =12AD ,CN =12BC ,∴2MN =+12BC−CD=AD−CD +BC−CD =AC +BD=AB−CD ,故④不符合题意, 故选:A .【点睛】本题考查了线段的和差运算,能够利用中点的性质及线段的和差关系求解一些线段之间的关系是解本题的关键.【变式2-1】(2023春·山东济南·七年级校考阶段练习)两根木条,一根长10cm ,另一根长8cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为 cm .【答案】1或9【分析】设AC =8cm ,AB =10cm ,根据题意分两种情况:①如图1,两根木条如图放置,有一端重合,根据点E 是AC 的中点,点D 是AB 的中点,可得AE =12AC =12×8=4,AD =12AB =12×10=5,再由ED =AE +AD 即可得出答案;②如图2,两根木条如图放置,有一端重合,根据点E 是AC 的中点,点D 是AB 的中点,可得AE =12AC =12×8=4,AD =12AB =12×10=5,再由ED =AD−AE 即可得出答案.【详解】解:设AC =8cm ,AB =10cm ,根据题意,①如图1,∵点E 是AC 的中点,点D 是AB 的中点,∴AE =12AC =12×8=4,AD =12AB =12×10=5,∴ED =AE +AD =4+5=9(cm);②如图2,∵点E 是AC 的中点,点D 是AB 的中点,∴AE =12AC =12×8=4,AD =12AB =12×10=5,∴ED =AD−AE =5−4=1(cm).综上所述,两根木条的中点之间的距离为1cm 或9cm .故答案为:1或9.【点睛】本题主要考查两点间的距离及线段的和差,中点的定义,本题运用了分类讨论和数形结合的思想方法.熟练掌握两点的距离及线段和差的计算方法是解题的关键.【变式2-2】(2023秋·江苏南京·七年级校考期末)如图,C 为线段AD 上一点,点B 为CD 的中点,且AD =26cm ,BC =6cm .(1)图中共有 条线段?(2)求AC 的长.(3)若点E 在直线AD 上,且EA =8cm ,求BE 的长.【答案】(1)6(2)14cm (3)12cm 或28cm【分析】(1)根据两点确定一条线段进行求解即可;(2)先根据线段中点的定义求出CD=12cm,则AC=AD−CD=14cm;(3)分当点E在线段AD上时,当点E在线段DA的延长线上时,两种情况求出CE的长即可得到答案.【详解】(1)解:由题意得,图中的线段有:AC,BC,BD,AB,CD,AD一共6条,故答案为:6;(2)解:∵BC=6cm,点B为CD的中点,∴CD=2BC=12cm,∵AD=26cm,∴AC=AD−CD=14cm;(3)解:如图1所示,当点E在线段AD上时,∵AC=14cm,AE=8cm,∴CE=AC−AE=6cm,∵BC=6cm,∴BE=BC+CE=12cm;解:如图2所示,当点E在线段DA的延长线上时,∵AC=14cm,AE=8cm,∴CE=AC+AE=22cm,∵BC=6cm,∴BE=BC+CE=28cm;综上所述,BE的长为12cm或28cm.【点睛】本题主要考查了线段的和差计算,与线段中点有关的线段计算,利用分类讨论的思想求解是解题的关键.【变式2-3】(2023秋·安徽合肥·七年级合肥市第四十五中学校考期末)已知B、C在线段AD上.(1)如图,图中共有条线段,AD=+-;(2)如图,若AB:BD=2:5.AC:CD=4:1.且BC=18,求AD的长度.【答案】(1)6;AC,BD,BC (2)AD =35【分析】(1)根据线段的定义可求出线段的数量;根据线段的和差可可解决与AD 有关的数量关系;(2)设AD =x ,表示出AB 、AC ,根据BC =18列方程求解即可.【详解】(1)图中线段有:AB,AC,AD,BC,BD,CD 共6条;AD =AC +BD−BC .故答案为:6;AC,BD,BC .(2)设AD =x因为AB :BD =2:5,AC :CD =4:1所以AB =252BD =27x ,AC =441BD =45x 因为AC−AB =BC ,BC =18所以45x−27x =18解得x =35所以AD =35.【点睛】本题考查了线段的定义,线段的和差,以及一元一次方程的应用,数形结合是解答本题的关键.【题型3 线段的数量关系】【例3】(2023秋·江西九江·七年级统考期末)已知点M 是线段AB 上一点,若AM =14AB ,点N 是直线AB 上的一动点,且AN−BN =MN ,则MNAB = .【答案】1或12【分析】分两种情况:当点N 在线段AB 上,当点N 在线段AB 的延长线上,然后分别进行计算即可解答.【详解】解:分两种情况:当点N 在线段AB 上,如图:∵AN−BN =MN ,AN−AM =MN ,∴BN =AM ,∵AM =14AB ,∴BN=14AB,∴MN=AB−AM−BN=12AB,∴MNAB =12;当点N在线段AB的延长线上,如图:∵AN−BN=MN,AN−BN=AB,∴AB=MN,∴MNAB=1,综上所述:MNAB 的值为1或12,故答案为:1或12.【点睛】本题考查了两点间的距离,分两种情况进行计算是解题的关键.【变式3-1】(2023秋·江苏·七年级期末)如图,C、D是线段AB上两点,且CD=3AD−2BC,则AC与BD 的关系是()A.AC=BD B.2AC=BD C.3AC=2BD D.4AC=3BD【答案】C【分析】先分别表示出AC和BD,即可求出两者的关系.【详解】解:∵AC=AD-CD=AD-3AD+2BC=2BC-2AD=2(BC-AD),BD=BC-CD=BC-3AD+2BC=3BC-3AD=3(BC-AD),∴AC BD =2(BC−AD)3(BC−AD)=23,∴3AC=2BD,故选:C.【点睛】本题考查线段的计算,熟练掌握线段的和差是解题的关键.【变式3-2】(2023春·上海·七年级专题练习)如图,已知点C为线段AB的中点,D为CB上一点,下列关系表示错误的是( )A.CD=AC﹣DB B.BD+AC=2BC﹣CDC.2CD=2AD﹣AB D.AB﹣CD=AC﹣BD【答案】D【分析】根据图形可以明确线段之间的关系,对线段CD、BD、AD进行和、差转化,即可发现错误选项.【详解】解:∵C是线段AB的中点,∴AC=BC,AB=2BC=2AC,AB﹣BD=AC﹣BD;∴CD=BC﹣BD=12∵BD+AC=AB﹣CD=2BC﹣CD;∵CD=AD﹣AC,∴2CD=2AD﹣2AC=2AD﹣AB;∴选项A、B、C均正确.而答案D中,AB﹣CD=AC+BD;∴答案D错误符合题意.故选:D.【点睛】本题考查线段的和差,是基础考点,掌握相关知识是解题关键.【变式3-3】(2023春·浙江·七年级期中)如图1,AB是一条拉直的细绳,C,D两点在AB上,且AC:BC=2:3,AD:BD=3:7.则(1)CD:AD=;(2)若将点C固定,将AC折向BC,使得AC落在BC上(如图2),再从点D处剪断,使细绳分成三段,分成的三段细绳的长度由小到大之比为.【答案】1∶3 2∶3∶5【分析】(1)根据题意AC:BC =2:3,可得AC:AB =2:5,AC =25AB ;根据AD:BD =3:7,可得AD:AB =3:10,AD =310AB ;CD =AC−AD =110AB ,CD:AD 就是110AB:310AB ,计算求出答案即可.(2)设对折后点D 关于C 点对称处为D ′,被剪断两处分别是点D 和D ′,剪开的三段细绳依次是AD 、DD ′、D ′B ,根据对折性质DD ′=2DC ,D ′B =CB−CD ′,把AD 、DD ′、D ′B 的长度写成关于AB 的值,比较大小后代入计算即可.【详解】解:(1)∵AC:BC =2:3,AC +CB =AB ,∴AC:AB =2:(2+3)=2:5,∴AC =25AB ;∵AD:BD =3:7,AD +DB =AB ,∴AD:AB =3:(3+7)=3:10,∴AD =310AB ;∵CD =AC−AD =25AB−310AB =110AB ,∴CD:AD =110AB:310AB =1:3.(2)设对折后点D 关于C 点对称处为D ′,被剪断两处分别是点D 和D ′,剪开的三段细绳依次是AD 、DD ′、D ′B ,∵根据上题,AD =310AB ;DD ′=2DC =2×110AB =15AB ;D ′B =CB−CD ′=CB−CD =35AB−110AB =12AB ;∴DD ′<AD <D ′B .∴DD ′:AD:D ′B =15AB:310AB:12AB =2:3:5.故答案为:(1)1∶3(2)2∶3∶5.【点睛】本题考查了线段的和与差,根据比值,将每一段的长度表示成总长度的几分之几,用代数的方法代入计算是解题关键.【题型4 简单线段的长短比较】【例4】(2023春·福建龙岩·七年级校考阶段练习)如图,小明从家到学校分别有①、②、③三条路可走:①为折线段ABCDEFG ,②为折线段AIG ,③为折线段AJHG .三条路的长依次为a 、b 、c ,则( )A.a>b>c B.a=b>c C.a>c>b D.a=b<c【答案】B【详解】观察图形,可知:①②相等,③最短,a、b、c的大小关系是:a=b>c.故选B.【点睛】本题考查线段长短的度量、比较, 根据平移的性质,两点间线段距离最短,认真观察图形,可知①②都是相当于走直角线,故①②相等,③走的是两点间的线段,最短.【变式4-1】(2023秋·七年级课时练习)如图,已知三角形ABC,下列比较线段AC和AB长短的方法中,可行的有()①用直尺度量出AB和AC的长度;②用圆规将线段AB叠放到线段AC上,观察点B的位置;③沿点A折叠,使AB和AC重合,观察点B的位置.A.0个B.1个C.2个D.3个【答案】D【分析】①用直尺度量出AB和AC的长度,比较长度;②用圆规将线段AB叠放到线段AC上,若点B在线段AC 上,AB<AC;若点B与点C重合,AB=AC;若点B在AC的延长线上,AB>AC;③沿点A折叠,使AB和AC 重合,若点B在线段AC上,AB<AC;若点B与点C重合,AB=AC;若点B在AC的延长线上,AB>AC.【详解】比较线段AC和AB长短的方法有:①用直尺度量出AB和AC的长度,比较长度;②用圆规将线段AB叠放到线段AC上,观察点B的位置,若点B在线段AC上,AB<AC;若点B与点C重合,AB=AC;若点B在AC的延长线上,AB>AC;③沿点A折叠,使AB和AC重合,观察点B的位置,若点B在线段AC上,AB<AC;若点B与点C重合,AB=AC;若点B在AC的延长线上,AB>AC.共3个方法.故选:D .【点睛】本题主要考查了比较三角形两边长短的方法,熟练掌握度量法,叠合法,是解决问题的关键,其中叠合法包括叠放法,折叠法.【变式4-2】(2023秋·云南楚雄·七年级统考期末)如图,B ,C 在线段AD 上,M 是AB 的中点,N 是CD 的中点,(1)图中以C 为端点的线段共有______条.(2)若AB =CD ,①比较线段的长短:AC ______BD ;AN ______DM (填:“>”、“=”或“<”)②若AD =21,AB:BC =2:3,求MN 的长度.【答案】(1)5(2)①=;=;②15【分析】(1)除C 点外还有5个端点,即以C 为端点的线段有5条;(2)①根据题意有AM =MB =12AB ,CN =ND =12CD ,即有AB +BC =CD +BC ,AM =MB =CN =ND ,即有AC =BD ,AD−ND =AD−AM ,问题随之得解;②设AB =2x ,BC =3x ,则CD =2x ,依题意,得2x +3x +2x =21,即可得AB =6,BC =9,CD =6,根据①:AM =MB =12AB ,CN =ND =12CD ,即可求解.【详解】(1)∵除C 点外还有5个端点,∴以C 为端点的线段有5条,故答案为:5;(2)①∵M 是AB 的中点,N 是CD 的中点,∴AM =MB =12AB ,CN =ND =12CD ,∵AB =CD ,∴AB +BC =CD +BC ,AM =MB =CN =ND ,∴AC =BD ,AD−ND =AD−AM ,∴AN =DM ,故答案为:=,=;②设AB =2x ,BC =3x ,则CD =2x ,依题意,得2x +3x +2x =21,解得x =3,故AB =6,BC =9,CD =6,∵根据①:AM =MB =12AB ,CN =ND =12CD ,∴MN =BM +BC +CN =3+9+3=15.【点睛】本题考查了有关线段中点的计算,一元一次方程的应用等知识,理清各线段的关系,是解答本题的关键.【变式4-3】(2023秋·浙江杭州·七年级统考期末)如图,已知直线AB ,射线AC ,线段BC .(1)用无刻度的直尺和圆规作图:延长BC 到点D ,使CD =AC ,连接AD .(2)比较AB +AD 与BC +AC 的大小,并说明理由.【答案】(1)见解析(2)AB +AD >BC +AC ,见解析【分析】(1)根据题意,作出图形即可;(2)利用两点之间线段最短以及线段的和差,求解即可.【详解】(1)解:如图;(2)解:根据两点之间线段最短可判断AB +AD >BD .即AB +AD >BC +CD∵CD =AC∴AB+AD>BC+AC【点睛】此题考查了尺规作图-线段,以及两点之间线段最短,解题的关键是熟练掌握相关基础知识.【题型5 两点间的距离】【例5】(2023秋·河北张家口·七年级统考期末)如图,在线段MN上有P、Q两点,PQ长度为2cm,MN长为整数,则以M、P、Q、N为端点的所有线段长度和可能为()A.19cm B.20cm C.21cm D.22cm【答案】B【分析】根据题意可知,所有线段的长度之和是MP+MQ+MN+PQ+PN+QN,然后根据PQ=2cm,线段MN的长度是一个正整数,可以解答本题.【详解】解:由题意可得,图中以M、P、Q、N这四点中任意两点为端点的所有线段长度之和是:MP+MQ+MN+PQ+PN+QN (MP+PQ+QN)+(MQ+PN)+MN=MN+MN+PQ+MN=3MN+PQ∴以M、P、Q、N为端点的所有线段长度和为长度为3的倍数多2,∴以M、P、Q、N为端点的所有线段长度和可能为20.故选B.【点睛】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.【变式5-1】(2023秋·江西吉安·七年级校考期末)在同一直线上有A,B,C,D不重合的四个点,AB=8,BC=3,CD=5,则AD的长为.【答案】6或10或16【分析】由于没有图形,故A,B,C,D四点相对位置不确定,分:点C在B的左侧、右侧,点D在C的左侧、右侧等,不同情况画图分别求解即可.【详解】解:I.当点C在B的右侧,点D在C的左侧时,如图:∵AB=8,BC=3,CD=5,∴AD =AB +BC−CD =8+3−5=6,II .当点C 在B 的右侧,点D 在C 的右侧时,如图:∴AD =AB +BC−CD =8+3+5=16,III .当点C 在B 的左侧,点D 在C 的左侧时,如图:∴AD =AB−BC−CD =8−3−5=0,点A 、D 重合,不合题意,IV .当点C 在B 的左侧,点D 在C 的右侧时,如图:∴AD =AB−BC +CD =8−3+5=10,点A 、D 重合,不合题意,综上所述:AD 的长为6或10或16故答案为:6或10或16.【点睛】本题主要考查两点间的距离,解题的关键是根据点的不同位置进行分类讨论、利用线段之间的和差关系得到AD 的长度.【变式5-2】(2023秋·福建福州·七年级统考期末)互不重合的A 、B 、C 三点在同一直线上,已知AB =2a,AC =a +6,BC =3a +1,则这三点的位置关系是( )A .点A 在B 、C 两点之间B .点B 在A 、C 两点之间C .点C 在A 、B 两点之间D .无法确定【答案】B【分析】根据题意得a ≥0,若点A 在B 、C 两点之间,则AB +AC =BC ,此时无解,若点B 在A 、C 两点之间,则BC +AB =AC ,解得a =54,若点C 在A 、B 两点之间,则BC +AC =AB ,解得a =−72,综上,即可得.【详解】解:∵AB =2a,AC =a +6,BC =3a +1,∴a ≥0,A 、若点A 在B 、C 两点之间,则AB+AC=BC,2a+a+6=3a+1,此时无解,故选项A情况不存在;B、若点B在A、C两点之间,则BC+AB=AC,3a+1+2a=a+6,a=54,故选项B情况存在;C、若点C在A、B两点之间,则BC+AC=AB,3a+1+a+6=2a,a=−72,故C情况不存在;故选:B.【点睛】本题考查了两点间的距离,整式的加减,解题的关键是理解题意,掌握这些知识点,分类讨论.【变式5-3】(2023秋·辽宁大连·七年级统考期末)如图,A、B、C、D、E是直线l上的点,线段AB=12 cm,点D、E分别是线段AC、BC的中点.(1)求线段DE的长;(2)若BC=4cm,点O在直线AB上,AO=5cm,求线段OE的长;(3)若BC=m cm,点O在直线AB上,AO=n cm,请直接写出线段OE的长 cm.(用含m、n的式子表示)【答案】(1)6cm(2)5cm或15cm(3)(n+12−m2)或(12−n−m2)或(n−12+m2)cm【分析】(1)根据线段中点的定义和线段的和差即可得到结论;(2)根据线段的和差关系即可得到结论;(3)根据线段的和差关系即可得到结论.【详解】(1)∵点D 、E 分别是线段AC 、BC 的中点,∴DC =AD =12AC ,BE =CE =12BC ,∴DE =DC +CE =12AC +12BC =12AB =12×12=6cm ;(2)∵E 为BC 的中点,∴BE =CE =12BC =2cm ,当点O 在点A 的左边时,OE =OA +AE =OA +AB−BE =5+12−2=15cm ;当点O 在点A 的右侧时,OE =AE−OA =AB−BE−OA =12−2−5=5cm ;(3)∵BC =m cm ,∴BE =CE =12BC =m 2,当点O 在点A 的左边时,OE =OA +AE =OA +AB−BE =(n +12−m 2)cm ;当点O 在点A 的右侧在E 的左侧时,OE =AE−OA =AB−BE−OA =(12−n−m 2)cm ,当点O 在E 的右侧时,OE =BE−AB +OA =(n−12+m 2)cm ,综上所述,线段OE 的长为(n +12−m 2)或(12−n−m 2)或(n−12+m 2)cm ;故答案为: (n +12−m 2)或(12−n−m 2)或(n−12+m 2)cm .【点睛】本题考查了两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.【题型6 线段n 等分点的有关计算】【例6】(2023·全国·七年级假期作业)如图,将一根绳子对折以后用线段AB 表示,点P 是AB 的四等分点,现从P 处将绳子剪断,剪断后的各段绳子中的一段长为30cm ,则这条绳子的原长为 cm .【答案】40或80或120或240.【分析】分AP =13PB ,PB =13AP 这两种情况,结合图形就所得三段绳子其中一段长度为30cm ,再分类讨论求解可得.【详解】解:①如图1,当AP =13PB 时,此时剪开的三段分别为AP 、PP′、A′P′,若AP=A′P′=30cm ,则PB=P′B=3PA=90cm ,此时AA′=AP+PP′+A′P′=30+180+30=240(cm );若PP′=30cm ,则PB=P′B=15cm ,AP=A′P′=13PB=5cm ,此时AA′=5+30+5=40(cm );②如图2,当PB =13AP 时,此时剪开的三段分别为AP 、PP′、A′P′,若AP=A′P′=30cm ,则PB=P′B=13AP=10cm ,此时AA′=AP+PP′+A′P′=30+20+30=80(cm );若PP′=30cm ,则PB=P′B=15cm ,AP=A′P′=3PB=45cm ,此时AA′=AP+PP′+A′P′=45+30+45=120(cm );综上,这条绳子的原长为40或80或120或240cm ,故答案为:40或80或120或240.【点睛】本题考查线段的和差.熟练掌握线段等分点的性质和线段的和差计算及分类讨论思想的运用是解题的关键.【变式6-1】(2023秋·福建龙岩·七年级统考期末)如图B 、C 两点把线段AD 分成2:3:4的三部分,M 是AD 的中点,CD =8,求MC 的长.【答案】MC =1【分析】设AB =2x ,得CD =4x ,BC =3x ,AD =9x ,再根据CD =8,求出x 的值,故可得出线段AD 的长度,再根据M 是AD 的中点可求出MD 的长,由MC =MD−CD 即可得出结论.【详解】解:设AB =2x ,∵AB ∶BC ∶CD =2∶3∶4,∴CD =4x ,BC =3x ,AD =(2+3+4)x =9x ,∵CD =8,∴x=2,∴AD=9x=18,∵M是AD的中点,∴MD=12AD,∴MC=MD−CD=12AD−CD=12×18−8=1.【点睛】本题考查的是线段的和差运算,中点的含义,在解答此类问题时要注意各线段之间的和、差及倍数关系.【变式6-2】(2023春·黑龙江哈尔滨·七年级统考期末)如图,线段AB和线段CD的公共部分是线段BD,点E、F分别是AB、CD的中点,若BF:DE=5:2,BC−EF=3,AE=6,则AC的长为.【答案】26【分析】由图,可求CF−BE=3,由BE=AE=6,得DF=CF=3+BE=9,于是9−DB6−DB =52,得DB=4,进而求得AC=AB+CD−DB=26.【详解】解:∵BC−EF=3,BC,EF有一段公共边BF,∴CF−BE=3,∵E、F分别是AB、CD的中点,∴BE=AE=6,∴DF=CF=3+BE=3+6=9,∵BF=9−DB,DE=6−DB,BF:DE=5:2,∴9−DB6−DB =52,∴DB=4,∴AC=AB+CD−DB=6×2+9×2−4=26.故答案为:26.【点睛】本题考查根据直线上线段间的数量关系计算线段长度,由直线上点之间的位置关系确定线段间的数量关系是解题的关键.【变式6-3】(2023秋·河南新乡·七年级统考期末)小明在学习了比较线段的长短时对下面一道题产生了探究的兴趣:如图1,点C 在线段AB 上,M ,N 分别是AC ,BC 的中点.若AB =6,AC =2,求MN 的长.(1)根据题意,小明求得MN =______.(2)小明在求解(1)的过程中,发现MN 的长度具有一个特殊性质,于是他先将题中的条件一般化,并开始深入探究.设AB =a ,C 是线段AB 上任意一点(不与点A ,B 重合),小明提出了如下三个问题,请你帮助小明解答.①如图1,M ,N 分别是AC ,BC 的中点,则MN =______.②如图2,M ,N 分别是AC ,BC 的三等分点,即AM =13AC ,BN =13BC ,求MN 的长.③若M ,N 分别是AC ,BC 的n (n ≥2)等分点,即AM =1n AC ,BN =1n BC ,则MN =______.【答案】(1)3(2)①12a ;②23a ;③n−1n a【分析】(1)由AB =6,AC =2,得BC =AB−AC =4,根据M ,N 分别是AC ,BC 的中点,即得CM = 12 AC =1,CN = 12 BC =2,故MN =CM +CN =3;(2)①由M ,N 分别是AC ,BC 的中点,知CM = 12 AC ,CN = 12 BC ,即得MN = 12 AC + 12 BC = 12 AB ,故MN = 12 a ;②由AM = 13 AC ,BN = 13 BC ,知CM = 23 AC ,CN = 23 BC ,即得MN =CM +CN = 23 AC + 23 BC = 23 AB ,故MN = 23 a ;③由AM = 1n AC ,BN = 1n BC ,知CM =n−1n AC ,CN = n−1n BC ,即得MN =CM +CN = n−1n AC + n−1n BC = n−1n AB ,故MN = n−1n a .【详解】(1)解:∵AB=6,AC=2,∴BC=AB−AC=4,∵M,N分别是AC,BC的中点,∴CM=12AC=1,CN=12BC=2,∴MN=CM+CN=3;故答案为:3;(2)解:①∵M,N分别是AC,BC的中点,∴CM=12AC,CN=12BC,∴MN=12AC+12BC=12AB,∵AB=a,∴MN=12a;故答案为:12a;②∵AM=13AC,BN=13BC,∴CM=23AC,CN=23BC,∴MN=CM+CN=23AC+23BC=23AB,∵AB=a,∴MN=23a;③∵AM=1n AC,BN=1nBC,∴CM=n−1n AC,CN=n−1nBC,∴MN=CM+CN=n−1n AC+n−1nBC=n−1nAB,∵AB=a,∴MN=n−1na,故答案为:n−1na.【点睛】本题考查了线段的中点、线段的和差,解题的关键是掌握线段中点的定义及线段和差运算.【题型7与线段的长短比较有关的应用】【例7】(2023春·北京海淀·七年级首都师范大学附属中学校考开学考试)如图,在公路MN两侧分别有A1,A2,⋯,A7七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”,由以上几个描述①车站的位置设在C点好于B点;②车站的位置在B点与C点之间任何一点效果一样;③车站位置的设置与各段小公路的长短无关.其中,正确的是.【答案】①③【分析】根据最优化问题,即可判断出正确答案.【详解】解;如图,因为A、D、E点各有一个工厂相连,B,C,各有两个工厂相连,把工厂看作“人”.可简化为“A,B,C,D,E处分别站着1,2,2,1,1个人(如图),求一点,使所有人走到这一点的距离和最小”把人尽量靠拢,显然把人聚到B、C最合适,靠拢完的结果变成了B=4,C=3,最好是移动3个人而不要移动4个人.所以车站设在C点,且与各段小公路的长度无关.故答案为:①③.【点睛】此题属于最优化问题,做这类题要做到规划合理,也就是要考虑到省时省力.【变式7-1】(2023春·江西宜春·七年级江西省丰城中学校考开学考试)如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A.点A B.点B C.A,B之间D.B,C之间【答案】A【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=4500(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=4500+5m>4500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>4500.∴该停靠点的位置应设在点A;故选A.【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短.【变式7-2】(2023春·浙江宁波·七年级校考开学考试)一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.【答案】150【详解】假设车站距离1号楼x米,然后运用绝对值表示出总共的距离,继而分段讨论x的取值去掉绝对值,根据数的大小即可得出答案.解:假设车站距离1号楼x米,则总距离S=|x|+2|x-50|+3|x-100|+4|x-150|+5|x-200|,①当0≤x≤50时,S=2000-13x,最小值为1350;②当50≤x≤100时,S=1800-9x,最小值为900;②当100≤x≤150时,S=1200-3x ,最小值为750(此时x=150);当150≤x≤200时,S=5x ,最小值为750(此时x=150).∴综上,当车站距离1号楼150米时,总距离最小,为750米.故答案为150.【变式7-3】(2023秋·江苏常州·七年级常州市清潭中学校考期中)在一条直线上有依次排列的n (n >1)台机床在工作,我们需要设置零件供应站P ,使这n 台机床到供应站P 的距离总和最小.要解决这个问题,先要分析比较简单的情形:如果直线上只有2台机床A 1,A 2时,很明显供应站P 设在A 1和A 2之间的任何地方都行,距离之和等于A 1到A 2的距离;如果直线上有3台机床A 1、A 2、A 3,供应站P 应设在中间一台机床A 2处最合适,距离之和恰好为A 1到A 3的距离;如果在直线上4台机床,供应站P 应设在第2台与第3台之间的任何地方;如果直线上有5台机床,供应站P 应设在第3台的地方;(1)阅读递推:如果在直线上有7台机床,供应站P 应设在( )处.A .第3台B .第3台和第4台之间C .第4台D .第4台和第5台之间(2)问题解决:在同一条直线上,如果有n 台机床,供应站P 应设在什么位置?(3)问题转化:在数轴上找一点P ,其表示的有理数为x .当x =_______时,代数式|x−1|+|x−2|+|x−3|+⋯+|x−99|取到最小值,此时最小值为___________.【答案】(1)C(2)当n 为奇数时,供应站P 应设在第n 12台的位置;当n 为偶数时,供应站P 应设在第n 2台第1台之间的任何位置(3)50,2450【分析】(1)从所给材料中找出规律即可求解;(2)分n 为奇数和n 为偶数两种情况,找出规律即可求解;(3)根据绝对值的几何意义和连续整数的和的计算公式即可求解.【详解】(1)解:根据题意可知:直线上有3台机床,供应站P应设在中间一台机床A2处最合适,直线上有5台机床,供应站P应设在中间一台机床A3处最合适,以此类推,如果在直线上有7台机床,供应站P应设在中间一台机床A4处最合适,故选C;(2)解:由题意知:台的位置;当n为奇数时,供应站P应设在第n12台和第1台之间的任何位置;当n为偶数时,供应站P应设在第n2(3)解:1到99最中间的数为:(1+99)÷2=50,应用(2)中结论可知,当x=50时,代数式|x−1|+|x−2|+|x−3|+⋯+|x−99|取到最小值,|50−1|+|50−2|+|50−3|+⋯+|50−99|=49+48+47+⋯+2+1+0+1+2+⋯+48+49=(1+49)×49=2450,即当x=50时,代数式|x−1|+|x−2|+|x−3|+⋯+|x−99|取到最小值,最小值为2450.【点睛】本题考查绝对值的几何意义、数轴上两点间的距离、有理数的混合运算等,解题的关键是掌握从特殊到一般和分类讨论的方法.【题型8线段中的动点问题】【例8】.(2023秋·新疆乌鲁木齐·七年级校考期末)如图,已知点A、点B是直线上的两点,AB=14厘米,点C在线段AB上,且BC=3厘米.点P、点Q是直线AB上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过秒时线段PQ的长为6厘米.【答案】3或9或1【分析】分四种情况:(1)点P、Q都向右运动;(2)点P、Q都向左运动;(3)点P向左运动,点Q 向右运动;(4)点P向右运动,点Q向左运动;求出经过多少秒时线段PQ的长为6厘米即可.【详解】解:(1)点P、Q都向右运动时,(6−3)÷(2−1)=3÷1。
专题08几何图形初步中求线段长度重难点题型分类(解析版)专题简介:本份资料包含《几何图形初步》这一章中求线段长度这一模块全部重要题型,所选题目源自各名校月考、期末试题中的典型考题,具体包含五类题型:简单利用线段的和差求线段长度、双中点问题中的线段长度、按比例分配的线段长度、点在直线上的分情况讨论求线段长度、用方程方法求线段长度、线段长度中的动点问题,适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。
题型一:简单利用线段的和差求线段长度1.(雅礼)如图,线段AB =8cm ,点C 在BA 的延长线上,AC =2cm ,M 是BC 中点,则AM 的长是cm .【解答】解:∵AB =8cm ,AC =2cm ,∴BC =AB +AC =8cm +2cm =10cm ,∵M 是BC 的中点,∴CM =BC =×10cm =5cm ,∴AM =CM ﹣AC =5﹣2=3(cm ),故答案为:3.2.(北雅)已知点C ,D 在线段AB 上,且AC =BD =1.5,若AB =7,则CD 的长为.【解答】解:如图:∵AC =BD =1.5,AB =7,∴CD =AB ﹣AC ﹣BD =4,故答案为:4.3.(长梅)如图,已知M 是线段AB 的中点,N 在AB 上,25MN AM =,若2cm MN =,求AB 的长.【解答】解:∵MN =AM ,MN =2m ,∴AM =5cm ,∵M 是线段AB 的中点,∴AB =2AM =10cm ,即AB 的长是10cm 4.(雅礼)已知线段AB 如图所示,延长AB 至C ,使BC =AB ,反向延长AB 至D ,使AD =BC ,点E 是线段CD 的中点.(1)依题意补全图形;(2)若AB 的长为4,求BE 的长.【解答】解:(1)图形如图所示:(2)∵AB =BC =4,AD =AB =2,∴CD =AD +AB +BC =10,∴DE =EC =CD =5,∴EB =EC ﹣BC =5﹣4=1.题型二:双中点问题中的线段长度两中点间线段长度=“大一半+小一半”或“大一半-小一半”5.(长郡)如图,C 为线段AB 的中点,D 是线段BC 的中点,BD =4cm ,AB =cm .【解答】解:∵点D 是线段BC 的中点,BD =4cm ,∴BC =2BD =2×4=8(cm ),∵点C 是线段AB 的中点,∴AB =2BC =16(cm ),故答案为:16.6.(青竹湖)如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为cm .【解答】解:∵点C 在线段AB 上,点M 、N 分别为AC 和BC 的中点,∴MC =AC ,NC =BC ,∴MN =MC +NC =(AC +CB )=AB =×8=4(cm ),故答案为:4.7.(长郡)如图,已知线段AB =16cm ,M 是AB 的中点,P 是线段MB 上一点,N 为PB 的中点,NB =3cm ,则线段MP =cm .【解答】解:∵M 是AB 的中点,AB =16cm ,∴AM =BM =8cm ,∵N 为PB 的中点,NB =3cm ,∴PB =2NB =6cm ,∴MP =BM ﹣PB =8﹣6=2(cm ).故答案为:2.8.(北雅)线段AB =1,C 1是AB 的中点,C 2是C 1B 的中点,C 3是C 2B 的中点,C 4是C 3B 的中点,依此类推……,线段AC 2022的长为.【解答】解:因为线段AB =1,C 1是AB 的中点,所以C 1B =AB =×1=;因为C 2是C 1B 的中点,所以C 2B =C 1B =×=;因为C 3是C 2B 的中点,所以C 3B =C 2B =×=;...,所以C 2022B =,所以AC 2022=AB ﹣C 2022B =1﹣,故答案为:1﹣.9.(一中双语)如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度.【解答】解:∵C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,∴AC =CB =AB =5cm ,CD =BC =2.5cm ,∴AD =AC +CD =5+2.5=7.5cm .10.(青竹湖)如图,已知点C 为AB 上一点,18AC =cm ,23CB AC =,D 、E 分别是AC 、AB 的中点,求DE 的长.【解答】解:∵AC =18cm ,CB =AC ,∴BC =×18=12cm ,则AB =AC +BC =30cm ,∵D 、E 分别为AC 、AB 的中点,∴=AC =9cm ,AE =AB =15cm ,∴DE =AE ﹣AD =15﹣9=6cm ,答:DE 的长是6cm .11.(明德)如图,点C 为线段AB 的中点,点E 为线段AB 上的一点,点D 为线段AE 的中点.(1)若线段AB =m ,CE =n ,|m ﹣10|+|n ﹣3|=0,求m ,n 的值;(2)在(1)的条件下,求线段DC 的长.【解答】解:(1)|m ﹣10|+(n ﹣3)2=0,∴m ﹣10=0,n ﹣3=0,∴m =10,n =3;(2)∵点C 为线段AB 的中点,AB =10,∴AC =BC =AB =5,∵CE =3,∴AE =AC +CE =5+3=8,∵点D 为线段AE 的中点,∴AD =AE =4,∴CD =AC ﹣AD =5﹣4=1.12.(广益)如图,C 是线段AB 上一点,线段AB =25cm ,,D 是AC 的中点,E 是AB 的中点.(1)求线段CE 的长;(2)求线段DE的长.【解答】解:(1)∵AB=25cm,BC=AC,∴BC=AB=×25=10(cm),∵E是AB的中点,∴BE=AB=12.5cm,∴EC=12.5﹣10=2.5(cm);(2)由(1)得,AC=AB﹣CB=25﹣10=15(cm),∵点D、E分别是AC、AB的中点,∴AE=AB==12.5(cm),AD=AC==7.5(cm),∴DE=AE﹣AD=12.5﹣7.5=5(cm).13.(雅礼)如图,已知线段AC=12cm,点B在线段AC上,满足BC=AB.(1)求AB的长;(2)若D是AB的中点,E是AC的中点,求DE的长.【解答】解:(1)∵BC=AB,AC=12cm,∴BC=AC=4cm,∴AB=AC﹣CB=12﹣4=8(cm);(2)∵D是AB的中点,AB=8cm,∴AD=AB=4cm,∵E是AC的中点,AC=12cm,∴AE=AC=6cm,∴DE=AE﹣AD=6﹣4=2(cm).14.(青竹湖)如图,已知线段AB C、D,且AC BD=,M、N分别是线段AC、AD的中点,若cmAB a=,a b-+-=.==,且a、b满足()21060AC BD bcm(1)求AB,AC的长度;(2)求线段MN的长度.【解答】解:(1)由题意可知:(a﹣10)2+|b﹣6|=0,∴a=10,b=6,∴AB=10cm,AC=6cm;(2)∵BD=AC=6cm,∴AD=AB﹣BD=4cm,又∵M、N是AC、AD的中点,∴AM=3cm,AN=2cm.∴MN=AM﹣AN=1cm.AB=,点C是线段AB的中点,点D为线段CB上的一点,点E为线段DB的15.(青竹湖)如图,已知40EB=。
线段的长短比较-重难点题型【例1】(2021•鼓楼区校级模拟)如图,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC﹣BD B.CD=12BC C.CD=12AB﹣BD D.CD=AD﹣BC【变式1-1】(2021秋•荔湾区期末)延长线段AB到C,使BC=12AB,反向延长AC到D,使AD=12AC,若AB=8cm,则CD=cm.【变式1-2】(2021春•长兴县月考)如图,在线段AB上有C、D两点,CD长度为1cm,AB长为整数,则以A,B,C,D为端点的所有线段长度和不可能为()A.16cm B.21cm C.22cm D.31cm【变式1-3】(2021秋•天津期末)如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm.求CM和AD的长.【题型2 线段中点的有关计算】【例2】(2021春•松北区期末)如图,点G是AB的中点,点M是AC的中点,点N是BC的中点,则下列式子不成立的是()A.MN=GB B.CN=12(AG−GC)C.GN=12(BG+GC)D.MN=12(AC+GC)【变式2-1】(2021秋•邵阳县期末)如图,点C 、D 是线段AB 上任意两点,点M 是AC 的中点,点N 是DB 的中点,若AB =a ,MN =b ,则线段CD 的长是( )A .2b ﹣aB .2(a ﹣b )C .a ﹣bD .12(a +b )【变式2-2】(2021秋•奉化区校级期末)两根木条,一根长10cm ,另一根长12cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( ) A .1cmB .11cmC .1cm 或11cmD .2cm 或11cm【变式2-3】(2021秋•江岸区校级月考)如图,点M 在线段AN 的延长线上,且线段MN =20,第一次操作:分别取线段AM 和AN 的中点M 1,N 1;第二次操作:分别取线段AM 1和AN 1的中点M 2,N 2;第三次操作:分别取线段AM 2和AN 2的中点M 3,N 3;……连续这样操作10次,则每次的两个中点所形成的所有线段之和M 1N 1+M 2N 2+…+M 10N 10=( )A .20(12+122+123+⋯+1210) B .20+1029 C .20−10210 D .20+10210 【题型3 线段n 等分点的有关计算】【例3】(2021春•东平县期末)如图,已知AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间的距离是10cm ,则AB 的长是 .【变式3-1】(2021春•奉贤区期末)如图,已知BD =16cm ,BD =25AB ,点C 是线段BD 的中点,那么AC = cm .【变式3-2】(2021秋•宝鸡期末)如图,P是线段AB上一点,AB=12cm,M、N两点分别从P、B出发以1cm/s、3cm/s的速度同时向左运动(M在线段AP上,N在线段BP上),运动时间为ts.(1)若M、N运动1s时,且PN=3AM,求AP的长;(2)若M、N运动到任一时刻时,总有PN=3AM,AP的长度是否变化?若不变,请求出AP的长;若变化,请说明理由;(3)在(2)的条件下,Q是直线AB上一点,且AQ=PQ+BQ,求PQ的长.【变式3-3】(2021秋•甘井子区期末)已知,点D是射线AB上的点,线段AB=4a,BD =nAB(0<n<1),点C是线段AD的中点.(1)如图1,若点D在线段AB上,当a=1,n=12时,求线段CD的长;(2)如图2,若点D在线段AB的延长线上,当n=12时,求线段CD的长;(用含a的式子表示)(3)若点D在射线AB上,请直接写出线段CD的长.(用含a和n的式子表示)【题型4 线段的数量关系】【例4】(2021秋•江门期末)如图,点B 在线段AC 上,D 是AC 的中点.若AB =a ,BC =b ,则BD =( )A .12b −12a B .12a −12bC .b −12aD .a −12b【变式4-1】(2021秋•沙湾区期末)如图,已知A ,B ,C ,D 是同一直线上的四点,看图填空:AC = +BC ,BD =AD ﹣ ,AC < .【变式4-2】(2021春•莱阳市期末)线段AB 的长为2cm ,延长AB 到点C ,使AC =3AB ,再延长BA 到点D ,使BD =2BC ,则线段CD 的长为 cm .【变式4-3】(2021秋•成都期末)已知点C 在线段AB 上,AC =2BC ,点D ,E 在直线AB 上,点D 在点E 的左侧.若AB =15,DE =6,线段DE 在线段AB 上移动. ①如图1,当E 为BC 中点时,求AD 的长;②点F (异于A ,B ,C 点)在线段AB 上,AF =3AD ,CF =3,求AD 的长;【题型5 两点之间线段最短】【例5】(2021春•莱州市期末)如图,A ,C 两村相距6km ,B ,D 两村相距5km .现要建一个自来水厂,使得该厂到四个村的距离之和最小.下列说法正确的是( )A .自来水厂应建在AC 的中点B .自来水厂应建在BD 的延长线上C .自来水厂到四个村的距离之和最小为11kmD .自来水厂到四个村的距离之和可能小于11km【变式5-1】(2021秋•丛台区校级期末)下列生活,生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着直线AB架设;④把弯曲的公路改直,就能缩短路程,其中可用“两点确定一条直线”来解释的现象有()A.①②B.①③C.②④D.③④【变式5-2】(2021秋•兴义市期末)如图,一只蚂蚁从长方体的一个顶点A沿表面爬行到顶点C处,有多条爬行线路,其中沿AC爬行一定是最短路线,其依据的数学道理是.【变式5-3】(2021秋•渠县期末)知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?【题型6 两点间的距离】【例6】(2021秋•罗湖区校级期末)如果在数轴上的A、B两点所表示的有理数分别是x,y,且|x|=3,|y|=1,则A,B两点间的距离是()A.4B.2C.4或2D.以上都不对【变式6-1】(2021秋•奉化区校级期末)如图,已知点A、点B是直线上的两点,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过多少时间线段PQ的长为5厘米.【变式6-2】(2021秋•秦淮区期末)直线l上的三个点A、B、C,若满足BC=12AB,则称点C是点A关于点B的“半距点”.如图1,BC=12AB,此时点C就是点A关于点B的一个“半距点”.若M、N、P三个点在同一条直线m上,且点P是点M关于点N的“半距点”,MN=6cm.(1)MP=cm;(2)若点G也是直线m上一点,且点G是线段MP的中点,求线段GN的长度.【变式6-3】(2021秋•姜堰区期末)如图,点C在线段AB上,AC=6cm,CB=4cm,点M以1cm/s的速度从点A沿线段AC向点C运动;同时点N以2cm/s从点C出发,在线段CB上做来回往返运动(即沿C→B→C→B→…运动),当点M运动到点C时,点M、N都停止运动,设点M运动的时间为ts.(1)当t=1时,求MN的长;(2)当t为何值时,点C为线段MN的中点?(3)若点P是线段CN的中点,在整个运动过程中,是否存在某个时间段,使PM的长度保持不变?如果存在,求出PM的长度;如果不存在,请说明理由.【题型7 简单的线段的长短比较】【例7】(2021秋•攀枝花校级期中)从A地到B地有两条路,第一条从A地直接到B地,第二条从A地经过C,D到B地,两条路相比,第一条的长度第二条的长度(填“<”“>”“=”)【变式7-1】(2021秋•双流区期末)体育课上,小明在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q【变式7-2】(2021秋•南海区期末)我们知道,比较两条线段的长短有两种方法:一种是度量法,是用刻度尺量出它们的长度,再进行比较;另一种方法是叠合法,就是把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较.(1)已知线段AB,C是线段AB上一点(如图①).请你应用叠合法,用尺规作图的方法,比较线段AC与BC的长短,并简单说明理由(要求保留作图痕迹);(2)如图②,小明用刻度尺量得AC=4cm,BC=3cm,若D是AC的中点,E是BC的中点,求DE的长.【变式7-3】(2021秋•宁波期末)已知数轴上的三点A、B、C所对应的数a、b、c满足a <b<c、abc<0和a+b+c=0.那么线段AB与BC的大小关系是()A.AB>BC B.AB=BC C.AB<BC D.不确定的【题型8 与线段的长短比较有关的应用】【例8】(2021秋•南沙区期末)如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处【变式8-1】(2021秋•海淀区校级期中)如图,在公路MN两侧分别有A1,A2…A7,七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③【变式8-2】一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.【变式8-3】(2021•烟台)先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.。