浙江省2009年高中数学课堂教学评比课题之一几类不同增长的函数模型(1) PPT课件 人教课标版
- 格式:ppt
- 大小:2.16 MB
- 文档页数:15
3、2、2、1 函数模型的应用举例一、【学习目标】1、培养学生由实际问题转化为数学问题的建模能力,即根据实际问题进行信息综合列出函数解析式.2、会利用函数图象性质对函数解析式进行处理得出数学结论,并根据数学结论解决实际问题.3、通过学习函数基本模型的应用,体会实践与理论的关系,初步向学生渗透理论与实践的辩证关系.二、【自学内容和要求及自学过程】 阅读材料,回答问题我们学习过的一次函数、二次函数、指数函数、对数函数以及幂函数,它们都与现实世界有着紧密的联系,有着广泛的应用.下面我们通过一些实例,来感受它们的广泛应用,体会解决实际问题中建立函数模型的过程.材料一:我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.设在甲家租一张球台开展活动x 小时的收费为f(x)元(15≤x ≤40),在乙家租一张球台开展活动x 小时的收费为g(x)元(15≤x ≤40),试求f(x)和g(x).结论:f(x)=5x(15≤x ≤40).g(x)=⎩⎨⎧≤<+≤≤4030,902,3015,90x x x材料二:A 、B 两城相距100 km ,在两地之间距A 城x km 处D 地建一核电站给A 、B 两城供电,为保证城市安全.核电站距城市距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A 城供电量为20亿度/月,B 城为10亿度/月.把月供电总费用y 表示成x 的函数,并求定义域.结论:y=5x 2+25(100—x)2(10≤x ≤90) 问题:你能说出材料一和材料二分别属于什么样的函数模型吗? 结论:材料一含有两个函数模型,一次函数模型、分段函数模型; 材料二为二次函数模型. 三、【练习与巩固】例1、一辆汽车在某段路程中行驶速率与时间关系如图<1>所示. <1>求图中阴影部分的面积,并说明所求面积的实际含义;<2>假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s km 与时间th 的函数解析式,并作出相应的图象.图<1> 图<2>结论:<1>阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.阴影部分的面积表示汽车在这5小时内行驶的路程为360 km.<2>根据图,有s=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤+-<≤+-<≤+-<≤+-<≤+.54,2299)4(65,43,2224)3(75,32.2134)2(90,21,2054)1(80,10,200450t t t t t t t t t t这个函数的图象如图<2>所示.练习一:电信局为了满足客户不同需要,设有A 、B 两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间关系如下图)所示(其中MN ∥CD).<1>分别求出方案A 、B 应付话费(元)与通话时间x(分钟)的函数表达式f(x)和g(x);<2>假如你是一位电信局推销人员,你是如何帮助客户选择A 、B 两种优惠方案?并说明理由.图3-2-2-3结论:<1>先列出两种优惠方案所对应的函数解析式:f(x)=⎪⎩⎪⎨⎧>-≤≤,100,10103,1000,20x x x g(x)=⎪⎩⎪⎨⎧>-≤≤.500,100103,5000,50x x x<2>当f(x)=g(x)时,103x-10=50, ∴x=200.∴当客户通话时间为200分钟时,两种方案均可; 当客户通话时间为0≤x <200分钟,g(x)>f(x),故选择方案A ; 当客户通话时间为x>200分钟时,g(x)<f(x),故选方案B.例2、人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766~1834)就提出了自然状态下的人口增长模型: y=y 0e rt ,其中t 表示经过的时间,y 0表示t=0时的人口数,r 表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料: 年份 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 人数/万人55196563005748258796602666145662828645636599467207<1>如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.000 1),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;<2>如果按表的增长趋势,大约在哪一年我国的人口达到13亿?结论:<1>设1951~1959年的人口增长率分别为r 1,r 2,r 3,…,r 9.由55196(1+r 1)=56300,可得1951年的人口增长率为r 1≈0.020 0.同理,可得r 2≈0.0210,r 3≈0.0229,r 4≈0.0250,r 5≈0.0197,r 6≈0.0223,r 7≈0.0276,r 8≈0.0222,r 9≈0.0184.于是,1950~1959年期间,我国人口的年平均增长率为r=(r 1+r 2+…+r 9)÷9≈0.0221.令y 0=55 196,则我国在1951~1959年期间的人口增长模型为y=55 196e 0.0221t ,t ∈N .根据表中的数据作出散点图,并作出函数y=55 196e 0.0221t (t ∈N )的图象由图可看出,所得模型与1950~1959年实际人口数据基本吻合.<2>将y=130000代入y=55 196e 0.0221t ,由计算器可得t ≈38.76.所以,如果按表的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿.由此可以看到,如果不实行计划生育,而是让人口自然增长,今天我国将面临难以承受的人口压力.练习二:一种放射性元素,最初的质量为500 g,按每年10%衰减. <1>求t 年后,这种放射性元素质量ω的表达式;<2>由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需的时间叫做半衰期).(精确到0.1.已知lg2=0.301 0,lg3=0.477 1)结论:<1>最初的质量为500 g.经过1年后,ω=500(1-10%)=500×0.91经过2年后,ω=500×0.9(1-10%)=500×0.92;由此推知,t 年后,ω=500×0.9t .<2>解方程500×0.9t =250,则0.9t =0.5,所以t=9.0lg 5.0lg =13lg 22lg --≈6.6(年),即这种放射性元素的半衰期约为6.6年.【归纳】:用已知的函数模型刻画实际问题时,由于实际问题的条件与得出已知模型的条件会有所不同,因此往往要对模型进行修正.四、【作业】五、【小结】六、【教学反思】。
课题几类不同增长的函数模型(1)教学目标:1. 能够找出简单实际问题中的函数关系式,2. 初步体会应用函数模型解决实际问题.3. 能够利用给定的函数模型或建立确定性函数模型解决实际问题.4.进一步感受运用函数概念建立函数模型的过程和方法,对给定的函数模型进行简单的分析评价.体会函数模型在数学和其他学科中的重要性.5.体会运用函数思想处理现实生活中和社会中的一些简单问题的实用价值.教学重点难点:1.重点:利用给定的函数模型或建立确定性质函数模型解决实际问题..2.难点:将实际问题转化为数学模型,并对给定的函数模型进行简单的分析评价.教法与学法:1.教法选择:在相对熟悉的问题情境中,通过学生自主探究,合作交流中完成的学习任务.尝试指导与自主学习相结合2.学法指导:学生自主阅读教材,采用尝试、讨论方式进行探究.教学过程:一、设置情境,激发探索点作铺垫⑤指出它们属于哪种函数模型.⑥讨论它们的单调性.⑦比较它们的增长差异.⑧另外还有哪种函数模型.生分析问题的能力虑问题的思路.实验探索辨析研讨①总价等于单价与数量的积.②面积等于边长的平方.③由特殊到一般,先求出经过1年、2年、….④列表画出函数图象.⑤引导学生回忆学过的函数模型.⑥结合函数表格与图象讨论它们的单调性.⑦让学生自己比较并体会.⑧另外还有与对数函数有关的函数模型.讨论结果:①y=x.②y=x2.③y=(1+5%)x,④如下表x 1 2 3 4 5 6y=x 1 2 3 4 5 6y=x2 1 4 9 16 25 36y=(1+5%)x 1.05 1.01 1.16 1.22 1.28 1.34它们的图象分别为图3-2-1-1,图3-2-1-2,图3-2-1-3.图3-2-1-1 图3-2-1-2 图3-2-1-3⑤它们分别属于:y=kx+b(直线型),y=ax2+bx+c(a≠0,抛物线型),y=ka x+b(指数型).⑥从表格和图象得出它们都为增函数.⑦在不同区间增长速度不同,随着x的增大y=(1+5%)x的增长速度越来越快,会远远大于另外两个函数.⑧另外还有与对数函数有关的函数模型,形如y=log a x+b,我们把它叫做对数型函数.引发学生思考,经历建立函数基本模型的过程倡导学生合作学习,让学生体验成功的快乐。
《几类不同增长的函数模型》(第一课时)教学设计一、教学目标二、教学重点与难点三、教学方法四、教学设计附1:板书设计附2:教学设计说明1、教学内容解析本节课内容选自《普通高中课程标准实验教科书数学1必修(A版)》第三章第二节“函数模型及其应用”,教学安排为四课时,在这里我们主要研究的是第一课时的内容.学生在本册书的第二章已经学习了指数函数等基本初等函数的概念、图象和性质,本节课是对这些基本初等函数性质的进一步拓展和应用,教材在探求解决实际问题的过程中,体验到几种常见函数模型在描述客观世界变化规律时各自的特点,始终贯穿着函数模型的应用这条主线,从而为下一节继续研究函数的增长性和“函数模型的应用”奠定了基础,拉开高中阶段数学建模活动的帷幕.课程标准中明确指出:数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育重要和基本的内容.数学建模是数学学习的一种新的方式,它为学生提供了自主学习空间,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力.2、教学目标分析本节课的内容脉络是:从学生熟悉的两个模拟实验入手,先动画演示摞砖的游戏,继而师生一起动手折纸.通过认真观察、动手操作,学生从不同的角度、层次挖掘其中所蕴含的数学问题,从而获得数学建模的初步体验;然后通过一组导入性问题的处理,使学生体会如何用恰当的函数模型来描述对应的数学问题,为后面的学习做出铺垫;进一步通过对例题的解决,让学生体会如何借助不同的表示方法对函数问题进行探究,弄清几类不同的增长型函数在实际问题中的应用,体会他们的增长差异.①本节课以培养学生挖掘实际背景中所蕴含的数学问题为切入点,突出了数学建模与解应用题的区别,体现了“数学是自然的,数学是有用的”这一新课程理念.②本节课以实际应用问题为主要研究的对象,以数表和图象为研究的主要依据,通过对图象以及数据的观察、分析、探究、归纳和概括得到所对应的结论,进而加强对几类函数的认识.③本节课渗透着函数与方程、数形结合的数学思想,通过将实际问题转化为函数问题,进而解决实际问题的研究经历,让学生体会到数学建模的过程和处理的方式.④通过这节课的学习,使学生经历观察、分析、探究、归纳、概括的认知过程,培养学生良好的思维品质,所采用的小组学习方式,也可以增强学生们的合作意识.3、教学问题诊断分析本节课涉及到的一次函数、二次函数、分段函数、指数函数学生在前面已经学过,基本掌握了它们的概念、图象和性质.另外,学生也熟悉了研究函数性质的一般方法,具有用函数知识解决实际问题的初步体验,这是本节课的知识基础.然而,学生前面的学习主要是针对某一类函数进行研究,很少将其综合在一起,学生没有或者很少有对这几类函数不同变化趋势的理解,让学生比较这几种函数的增长差异会有一定困难.另外,在第二章中,学生主要是从函数的基本模型认识函数,而较少涉及到函数在生活、生产中的实际应用.学生在研究具体问题时,如何选择恰当的模型函数分析和解决实际问题是另一个困难.这节课学习的对象是平顶山市实验高中高一年级的学生.该校是河南省示范性高中,学生的水平相对较高,基础知识掌握得较好,学生的理解能力比较强.在几个应用问题的理解上不会出现太大的问题.另外,学校一直十分重视新课改的研究,倡导尝试探究,学生已经习惯了小组合作学习的教学模式,参与讨论交流的积极性较高,这也是教学目标顺利实现的又一保证.4、教学策略分析①教法分析本节课选用合作探究与尝试概括相结合的教学方法.在教学中,从精心创设的问题情境出发,为学生提供更多的机会和时间,提问质疑、尝试探究、讨论交流、归纳总结等,促使学生的思维空间充分开放;积极营造出一个有利于人际沟通与合作的环境,使学生学会交流和分享自己的成果,并能把每个人的成果进行有效的整合,增强团队意识;这样做,能够丰富学生对数学与日常生活紧密联系的体验,感受数学的实际价值,增强应用意识,发展创新意识.②学法分析《高中数学课程标准》倡导自主探索、动手实践、合作交流等学习方式.根据本节课的教学内容和学生自主学习能力相对比较强的特点,本节课采用小组合作学习的教学组织形式,教师利用问题串来引导学生开展合作探究的学习活动.为了控制好课堂的研究方向,也为了提高小组讨论的效率,本节课设置了学案,引导学生的探究活动.在学案中为学生的讨论和探究设置了一系列的参考问题,在每一个问题之后都留给学生自己发现问题和解决问题的空间,以激发学生的数学学习兴趣,鼓励学生在学习的过程中,养成积极思考、主动交流的学习习惯.③教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,本节课借助信息技术工具,动画演示摞砖的游戏,绘制具体的常函数、一次函数、指数函数等基本初等函数的图象并列出相应的数据表格,通过数形结合开展数学探究活动.综上所述,本节课的设计亮点可以概括为以下三个方面:以问题为纽带;化结果为过程;把知识变成能力.通过体验数学建模的四个环节,引导学生经历知识的探究过程,对培养学生揭示数学关系的能力非常有益.。
教学目标:1.借助计算器或计算机制作数据表格和函数图像,对几种常见的函数类型的增长情况进行比较,在实际应用的背景中理解直线上升、指数爆炸、对数增长等不同函数类型增长的差异。
2.通过对投资方案的选择,学会利用数据表格和函数图像分析问题和解决问题;引导学生充分体验将实际问题“数学化”解决的过程,从而理解“数学建模”的思想方法解决问题的有效性。
3.鼓励学生收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),体验函数是描述宏观世界变化规律的基本数学模型,从而培养学习数学的兴趣。
教学重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.教学难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。
技术手段:计算机辅助教学。
教学方法:启发探究式。
教学过程一、创设情境,引入课题(1)先看一张图片,这是什么动物(2)关于兔子有这样一段故事:1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.(3)请看画面。
(4)可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.(5)一般而言,在理想条件(食物或养料充足,空间条件充裕,气候适宜,没有敌害等)下,种群在一定时期内的增长大致符合“J”型曲线;在有限环境(空间有限,食物有限,有捕食者存在等)中,种群增长到一定程度后不增长,曲线呈“S”型.可用指数函数描述一个种群的前期增长,用对数函数描述后期的增长.(6)生活中的增长现象比比皆是,在我们学过的函数中也有许多成增长形态发展的。
3.2.1几类不同增长的函数模型(第一课时)浙江省杭州第二中学詹爽姿一.内容和内容解析本节是高中数学必修1(人教A版)第三章《函数的应用》的起始课.增长的直线上升、指数爆炸、对数增长.对不同函数模型在增长差异上的研究,教围绕函数模型的应用这一核心,结合具体实例展开讨论,让学生在应用函数模型的过程中,体验到指数函数、对数函数、幂函数等函数模型在描述客观世界变化规律时各自的特点.教运用自选投资方案和制定奖励方案两个问题,引出函数模型增长情况比较的问题,接着运用信息技术从数值和图象两个角度比较了指数函数、对数函数、幂函数的增长情况的差异,说明不同函数类型增长的含义研究函数模型的应用所涉及的数学思想方法主要包括:由实际问题抽象为函数模型这一过程中蕴涵的符号化、模型化的思想;—归纳—猜想—证明;(3)经历建立和运用函数基本模型的过程,初步体验数学建模的基本思想,体会数学的作用与价值,培养分析问题、解决问题的能力.这部分内容教科书在处理上,以函数模型的应用这一内容为主线,以几个重要的函数模型为对象,将内容紧密结合起来,使之成为一个整体.教学中应当注意贯彻的意图,学生经历函数模型应用的过程.学生在已学过函数概念、指数函数、对数函数、幂函数,但由于指数函数、对数函数和幂函数的增长变化复杂,这就使得学生在研究过程中可能遇到困难.为了解决这一难点,教科书分三个步骤,创设问题情境,并通过恰点恰时而又层层递进的问题串,让学生在不断的观察、思考和探究的过程中,弄清几个函数间的增长差异,并培养分析问题解决问题的能力.第一步,教科书先创设了一个选择投资方案的问题情境,在解决问题的过程中给出了解析式、数表和图象三种表示,然后提出了三个思考问题,让学生一方面从中体会直线上升和指数爆炸,另一方面也学会如何选择恰当的表示形式对问题进行分析.第二步,教科书又创设了一个选择公司奖励模型的问题,让学生在观察和探究的过程中,体会到对数增长模型的特点.第三步,教科书提出了三种函数存在怎样的增长差异的问题.先让学生从不同角度观察指数函数和幂函数的增长图象,从中体会二者的差异;再通过两个探究问题,让学生对幂函数和对数函数的增长差异,以及三种函数的衰减情况进行自主探究.这样的安排内容上层次分明可以引导学生从不同的方面积极地开展观察、思考和探究活动,对典型的问题,多视点宽角度地进行了研究.对分析问题、解决问题能力的培养将有积极的推动.要让学生较为全面地体会函数模型的思想,特别是函数模型研究实际数据、图象等方面处理上的困难利用信息技术工具,就可以在不同的范围观察到指数函数、对数函数和幂函数的增长差异.这样,就使学生有机会接触到一些过去难以接触到的数学知识和思想方法收集数据并建立函数模型利用计算,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.—归纳—猜想—证明).【设计意图】让学生在观察和探究的过程中,学会理性分析,体会对数增长模型的特点.【备注】对判断模型二是否满足限制条件“”,考虑到学生现在知识储备和接受水平,只能采用了直观教学,通过构造新函数,观察新函数的图象来解决(因为该函数单调性的判定,必须运用高二数学中的导数知识与方法才能解决).六、拓展延伸,创新设计这个奖励方案实施以后,立刻调动了员工的积极性,企业发展蒸蒸日上,但随着时间的推移,又出现了新的问题,员工缺乏创造高销售额的积极性.问题8:我们的奖励方案有什么弊端?问题9:你能否设计出更合理的奖励模型?【创新设计】为了实现1000万元利润的目标,在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着销售利润x (单位:万元)的增加而增加,要求如下:10万~ 50万,奖金不超过2万;50万~ 200万,奖金不超过4万;200万~ 1000万,奖金不超过20万.请选择适当的函数模型,用图象表达你的设计方案.(四人一组,合作完成)【设计意图】设计开放性问题对例2拓展延伸,既检测了学生对几类不同模型增长差异的掌握情况,又鼓励学生学以致用,用以致优,使学生的学习过程成为在教师引导下的“再创造”过程.七、归纳总结,提炼升华问题10:通过本节课的学习,你有哪些收获?请你从知识、方法、思想方面作一个小结.1.知识:对函数的性质有了进一步的了解,我们体会到同是增长型函数,但其增长差异却很大:常数函数(没有增长);一次函数(直线上升);指数函数(爆炸增长);对数函数(平缓增长).2.方法:函数有三种表示方法(解析法、列表法、图象法);函数问题的一般研究方法(观察—归纳—猜想—证明)3.思想:两个例题都体现了数学建模的思想,即把实际问题数学化:面对实际问题,我们要读懂问题,运用所学知识,将其转化成数学模型,最终得到实际问题的解.【设计意图】理解几类不同增长的函数模型的增长差异,提炼数学思想方法,认识数学的应用价值.八、布置作业,巩固提高1.课本98页课后练习1,2;课本107页习题3.2(A组)第1题;2.收集一些社会生活中递增的一次函数、指数函数、对数函数的实例,对它们的增长速度进行比较,了解函数模型的广泛应用.【设计意图】进一步体验函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述;培养学生对数学学科的深刻认识,体会数学的应用价值.。