第5讲 二次根式
- 格式:ppt
- 大小:741.50 KB
- 文档页数:9
《二次根式的乘法》说课稿各位评委老师好:我是XX号,今天我说的课题是湘教版八年级下册第5章第二节第一课时《二次根式的乘法》。
一、说教材(一)教材的地位及作用分析:“二次根式”是初中代数重要的内容之一。
本节内容是在学习了二次根式的概念、性质的基础上进一步学习二次根式的乘法,同时也为后面学习二次根式的除法、加、减法等运算做准备,具有承上启下的作用,在教材中处于重要的地位。
对于学生,通过之前学习了二次根式的性质、化简,现在所学的乘法是对性质的一个应用,一个实践。
学生在观察讨论交流的过程中,能主动探索,勇于发现,培养学生知识的迁移和联系能力以及转化的数学思想。
(二)教学重点:(a≥0,b≥0),二次根a≥0,b≥0),并利用它们进行计算和化简。
(三)教学难点:在具体化简问题中,发现规律,利用积的算术平方根性质和二次根式乘法法则进行化简。
二、教学目标:依据课标要求,结合教材和学生实际,我指定了如下教学目标:(一)知识与技能目标1.通过学习,是学生进一步熟练掌握积的算术平方根的性质。
2.通过引导,让学生会运用积的算术平方根的性质进行二次根式的乘法运算和根式化简。
(二)过程与方法目标通过探索灵活运用积的算术平方根,使学生感知数学知识具有普遍的联系性。
熟练掌握运算法则,培养学生由特殊到一般的思维能力(三)情感与态度目标通过主动探究,合作交流,让学生充分参与到数学学习的过程中来,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,同时进一步培养同学间的合作交流能力和团队合作精神。
三、教法简介:教学法:根据教材特点和八年级学生的心理特征和认知水平,本课我采用引导设问法、讨论法、练习法等方法,激发学生学习兴趣,并在教学过程中注意加强对学生的启发和引导,充分展示自己的观点和见解,创设一个宽松愉快的学习氛围。
学生通过自主学习、合作探究等方法学习,充分体现出学生的主体地位。
【下面,我重点说下本课题的教学过程】四、教学过程:(一)复习,导入新课1.(a≥0,b≥0)2.在黑板分别板书3道带有根号有关算术平方根的积和积的算术平方根的计算题,请同学们完成。
第5讲 二次根式一、考点知识梳理【考点1 二次根式的概念和性质】 1.平方根、算术平方根若x 2=a ,则x 叫a 的平方根.当a≥0时,a 是a 的算术平方根.正数b 的平方根记作± b.a 是一个非负数,只有非负数才有平方根. 2.立方根及性质若x 3=a ,则x 叫a 的立方根.求一个数的立方根的运算叫开立方;任一实数a 的立方根记作3a ;3a 3=a ,(3a)3=a ,3-a =-3a . 3.二次根式的概念(1)形如a(a≥0)的式子叫二次根式,而a 为二次根式的条件是a≥0; (2)满足下列两个条件的二次根式叫最简二次根式: ①被开方数的因数是整数,因式是整式; ②被开方数中不含有开得尽方的因数或因式. 4.二次根式的性质 (1)ab =a·b(a≥0,b≥0);a b =ab(a≥0,b >0); (2)(a)2=a(a≥0); (3)a 2=|a|=⎩⎪⎨⎪⎧ a (a≥0)-a (a <0).【考点2 二次根式的运算】 二次根式的运算(1)二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并; (2)二次根式的乘法:a·b =ab(a≥0,b≥0); (3)二次根式的除法:ba =ba(a≥0,b >0); (4)二次根式的估值:二次根式的估算,一般采用“夹逼法”确定其值所在范围.具体地说,先对二次根式平方,找出与平方后所得的数相邻的两个能开得尽方的整数,对其进行开方,即可确定这个二次根式在哪两个整数之间;(5)在二次根式的运算中,实数的运算性质和法则同样适用.二次根式的混合运算顺序是:先算乘除,后算加减,有括号时,先算括号内的(或先去括号). 二、考点分析【考点1 二次根式的概念和性质】 【解题技巧】1.判断二次根式有意义的条件: (1)二次根式的概念.形如(a ≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.2.二次根式的基本性质:①≥0; a ≥0(双重非负性).②a = (a ≥0)(任何一个非负数都可以写成一个数的平方的形式).③=a (a ≥0)(算术平方根的意义)【例1】(2019 甘肃中考)使得式子有意义的x 的取值范围是( )A .x ≥4B .x >4C .x ≤4D .x <4【答案】D .【分析】直接利用二次根式有意义的条件分析得出答案. 【解答】解:使得式子有意义,则:4﹣x >0,解得:x <4,即x 的取值范围是:x <4. 故选:D .【一领三通1-1】(2019•广西)若二次根式有意义,则x 的取值范围是 .【答案】x ≥﹣4;【分析】根据被开数x +4≥0即可求解; 【解答】解:x +4≥0, ∴x ≥﹣4; 故答案为x ≥﹣4;【一领三通1-2】(2019•广州)代数式有意义时,x 应满足的条件是 .【答案】x >8.【分析】直接利用分式、二次根式的定义求出x 的取值范围. 【解答】解:代数式有意义时,x ﹣8>0, 解得:x >8.()2a ()2a故答案为:x>8.【一领三通1-3】(2019 台湾中考)若=2,=3,则a+b之值为何?()A.13B.17C.24D.40【答案】B.【分析】根据二次根式的定义求出a、b的值,代入求解即可.【解答】解:∵==2,∴a=11,∵==3,∴b=6,∴a+b=11+6=17.故选:B.【一领三通1-4】(2016河北中考)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点【答案】B.【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.【一领三通1-5】(2019 山东济南中考模拟)如图,表示7的点在数轴上表示时,在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【答案】A.【分析】(1)根据平方根的定义和绝对值的性质分别填空即可;(2)主要考查数轴,根据数轴上的点利用平方法,估算7的大致范围,然后结合数轴上点的位置和大小即可得到7的位置.【解答】(1)7是一个正数,它的绝对值大于2;②它的绝对值小于3;③2.5的平方是6.25;故选A【考点2 二次根式的运算】【解题技巧】1.二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.2.化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.3.二次根式运算的结果可以是数或整式,也可以是最简二次根式,如果二次根式的运算结果不是最简二次根式,必须化为最简二次根式.【例2】(2019 江苏南京中考)计算﹣的结果是.【答案】0.【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=2﹣2=0.故答案为0.【一领三通2-1】计算÷的结果是.【答案】3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:3【一领三通2-2】(2019 山西中考)下列二次根式是最简二次根式的是()A.B.C.D.【答案】D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:解:A、,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、是最简二次根式,故D符合题意.故选:D.【一领三通2-3】(2019 天津中考)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】D.【分析】由于25<33<36,于是<<,从而有5<<6.【解答】解:∵25<33<36,∴<<,∴5<<6.故选:D.【一领三通2-4】(2019•青岛)计算:﹣()0=2+1.【答案】2+1.【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【一领三通2-5】(2019•广州中考模拟)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是()A B 2 C D【答案】C【分析】利割补法求阴影部分的面积.【解答】阴影部分的面积5,新正方形的边长为 5.故选:C三、【达标测试】(一)选择题1.(2019 云南中考)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣1【答案】B.【分析】要根式有意义,只要令x+1≥0即可【解答】解:要使根式有意义则令x+1≥0,得x≥﹣1故选:B.2.(2019 重庆中考)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】C.【分析】先根据二次根式的乘法进行计算,再进行估算.【解答】解:(2+6)×,=2+6,=2+,=2+,∵4<5,∴6<2+<7,故选:C.3.(2019•兰州)计算:﹣=()A.B.2C.3D.4【答案】A.【分析】先化简二次根式,再合并同类二次根式即可得.【解答】解:﹣=2﹣=,故选:A.4.(2019 山东青岛中考模拟)若实数x满足|x﹣3|+=7,化简2|x+4|﹣的结果是()A.4x+2B.﹣4x﹣2C.﹣2D.2【答案】A.【分析】根据x的取值﹣4≤x≤3以及二次根式的性质,化简绝对值即可得到结果.【解答】解:∵|x﹣3|+=7,∴|x﹣3|+|x+4|=7,∴﹣4≤x≤3,∴2|x+4|﹣=2(x+4)﹣|2x﹣6|=2(x+4)﹣(6﹣2x)=4x+2,故选:A.5.(2019 河北衡水中考模拟)化简﹣a的结果是()A.﹣2a B.﹣2a C.0D.2a【答案】A.【分析】直接利用二次根式的性质化简进而得出答案.【解答】解:﹣a=﹣a﹣a2•=﹣a+a=0.故选:C.6.(2019 河北沧州中考模拟)若(a+)2与|b﹣1|互为相反数,则的值为()A.B.+1C.﹣1D.1﹣【答案】C.【分析】根据互为相反数的两个数等于0得出(a+)2+|b﹣1|=0,推出a+=0,b﹣1=0,求出a=﹣,b=1,代入求出即可.【解答】解:∵(a+)2与|b﹣1|互为相反数,∴(a+)2+|b﹣1|=0,∴a+=0,b﹣1=0,∴a=﹣,b=1,∴===﹣1,故选:C.7.(2019 山东青岛中考模拟)已知a为实数,则代数式的最小值为()A.0B.3C.D.9【答案】B.【分析】把被开方数用配方法整理,根据非负数的意义求二次根式的最小值.【解答】解:∵原式===∴当(a﹣3)2=0,即a=3时代数式的值最小,为即3故选:B.8.(2019 辽宁盘锦中考模拟)方程,当y=2时,m的取值范围是()A.350B.C.O D.m≤2【答案】C.【分析】根据两个非负数的和为0,必须都为0,得出4x﹣8=0,x﹣y﹣m=0,求出xy的值,代入即可求出m的值.【解答】解:∵方程,∴4x﹣8=0,x﹣y﹣m=0,x=2,m=y﹣2,∵y=2,∴m=0,故选:C.(二)填空题1.(2019 天津中考)计算(+1)(﹣1)的结果等于.【答案】2.【分析】利用平方差公式计算.【解答】解:原式=3﹣1 =2. 故答案为2.2.(2019 上海中考)如果一个正方形的面积是3,那么它的边长是 . 【答案】【分析】根据算术平方根的定义解答. 【解答】解:∵正方形的面积是3, ∴它的边长是.故答案为:3.(2019•长春)计算:3﹣= .【答案】2.【分析】直接合并同类二次根式即可求解. 【解答】解:原式=2.故答案为:2.4.(2019 山东枣庄中考模拟)函数y ,自变量x 的取值范围是 . 【答案】x≥-12且x≠1【分析】二次根式的被开方数为非负数,分式的分母不为0. 【解答】根据题意得⎩⎨⎧≠-≥+01012x x ∴x≥-12且x≠1.故答案是:x≥-12且x≠15. (2019 湖南长沙中考模拟)已知a 、b 为两个连续整数,且a <7<b ,则b a += . 【答案】5.【分析】利用估算求二次根式的范围. 【解答】因为2<7<3, 所以a=2,b=3, ∴a+b=2+3=5. 故答案是:56.(2019 上海中考模拟)方程31x 2=-的根是 . 【答案】x=5【分析】求根式中的被开方数中的未知数.乘法法则,乘法公式适合于二次根式. 【解答】两边平方,得2x -1=9. ∴2x=10 ∴x=5.经检验x=5是方程2x+1=3的根. 故答案是:x=57.(2019 上海中考模拟)化简:=-321 .【答案】2+ 3 【分析】化简1a+b形式通常乘以a -b,利用平方差公式(a+b)(a -b)=a -b. 【解答】原式=12-3=1×(2+3)(2-3)( 2+3) =2+322-(3)2 = 2+ 3.故答案是:2+ 38. (2019 河北沧州中考模拟)在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:(1)请用不同的方法化简;(2)化简:. 【答案】(1)﹣(2).【分析】(1)分式的分子和分母都乘以﹣,即可求出答案;把2看出5﹣3,根据平方差公式分解因式,最后进进约分即可. (2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.【解答】解:(1).(2)原式==. (三)解答题1.(2019 河北石家庄中考模拟)如图,实数a 、b 在数轴上的位置,化简222()a b a b -【分析】a 2=|a|=⎩⎨⎧<-≥).0(),0(a a a a 【解答】∵-1<a<0,0<b<1∴a -b<0.∴原式=|a|-|b|-|a -b|=-a -b+a -b=-2b.2.(2019 河北唐山中考模拟)先化简,再求值:222344322+-++÷+++a a a a a a a ,其中22-=a . 【分析】结果的分母应不含根号.先化简,再代入求值,化简时把分子、分母进行因式分解.【解答】当a=2-2时,原式=a(a+3)(a+2)2·a+2a+3-2a+2=a -1a+2=2-2-22-2+2 =2-42=1-2 2. 3. (2019 辽宁沈阳中考模拟)计算:cos45°·(-21)-2-(22-3)0+|-32|+121 【分析】先把三角函数,负指数、零指数、绝对值及分子分母中的根号等进行化简.a -p =1a p (a≠0,p 为正整数), 1a -b 化简为1a -b =a+b (a -b)(a+b)=a+b a -b. 【解答】原式=22×4-1+32+12-1=22-1+42+2+1=7 2.4.(2019 山东淄博中考模拟)(1)已知a +3与2a ﹣15是一个正数的平方根,求a 的值;(2)已知x ,y 为实数,且y =﹣+4,求的值.【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【解答】解:(1)根据平方根的性质得,a +3+2a ﹣15=0,解得:a =4,a +3=2a ﹣15,解得:a =18, 答:a 的值为4或18;(2)满足二次根式与有意义,则,解得:x =9,∴y =4,∴=+=5. 5.(2019 湖南长沙中考模拟)阅读材料:小明在学习二次根式的化简后,遇到了这样一个需要化简的式子:.该如何化简呢?思考后,他发现3+2=1+2+()2=(1+)2.于是==1+.善于思考的小明继续深入探索;当a+b=(m+n)2时(其中a,b,m,n均为正整数),则a+b=m2+2mn+2n2.此时,a=m2+2n2,b=2mn,于是,=m+n.请你仿照小明的方法探索并解决下列何题:(1)设a,b,m,n均为正整数且=m+n,用含m,n的式子分别表示a,b时,结果a=,b=;(2)利用(1)中的结论,选择一组正整数填空:=+;(3)化简:.【分析】(1)利用已知直接去括号进而得出a,b的值;(2)取m=2,n=1,计算a和b的值,利用完全平方公式,变形得出答案;(3)直接利用完全平方公式,变形化简即可.【解答】解:(1)由题意得:a+b=(m+n)2,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn;故答案为:m2+3n2;2mn;(2)取m=2,n=1,则a=m2+3n2=7,b=2mn=4,7+4=(2+)2;故答案为:;(3)==+1.6.(2019 河北衡水中考模拟)已知a、b、c为△ABC的三边长,化简:+.【分析】直接利用三角形三边关系得出a+b﹣c>0,b﹣c﹣a<0,进而化简得出答案.【解答】解:∵a、b、c为△ABC的三边长,∴a+b﹣c>0,b﹣c﹣a<0,∴原式=a+b﹣c﹣(b﹣c﹣a)=2a.7.(2019 河北石家庄中考模拟)已知|2018﹣m|+=m,求m﹣20182的值.【分析】直接利用二次根式有意义的条件分别分析得出答案.【解答】解:∵m﹣2019≥0,∴m≥2019,∴2018﹣m≤0,∴原方程可化为:m﹣2018+=m,∴=2018,∴m﹣2019=20182,∴m﹣20182=2019.8.(2019 河北石家庄中考模拟)在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.【分析】(1)根据完全平方公式求出即可;(2)先根据完全平方公式展开,再求出m、n的值,再求出a即可.【解答】解:(1)4+2=3+2+1=()2+2×+12=(+1)2;6+4=4+4+2=22+2×2×+()2=(2+)2;(2)∵a+4=(m+n)2,∴a+4=m2+2mn+3n2,∴a=m2+3n2,2mn=4,∴mn=2,∵m,n都是正整数,∴m=2,n=1或m=1,n=2;当m=2,n=1时,a=22+3×12=7;当m=1,n=2时,a=12+3×22=13;即a的值是7或13.。
第05讲实数与二次根式易错点梳理易错点梳理易错点01混淆平方根与算术平方根对于正数a 来说,a ±表示a 的平方根,a 表示a 的算术平方根。
易错点02混淆平方根与立方根的性质正数的平方根有两个,它们互为相反数;负数没有平方根,实数a 的立方根只有一个,无论a 是正数、负数还是0。
易错点03二次根式概念理解错误对二次根式的定义理解不透,认为只要带二次根号即为二次根式,忽视了二次根式a 中0≥a 的条件,所以在平时做题中必须特别注意理解二次根式的被开方数是非负数。
易错点04二次根式运算顺序出错由于乘除是同一级运算,因此按顺序哪个在前,要先算哪个运算。
易错点05错用二次根式的性质二次根式的性质有)0,0(≥≥∙=b a b a ab ;)0,0(>≥=b a ba ba ,切记不存在b a b a ±=±。
易错点06解题时忽视限制条件应用二次根式的运算性质)0,0(≥≥∙=b a b a ab ,)0,0(>≥=b a ba ba 时,必须要满足括号里的条件。
考向01平方根例题1:(2021·四川凉山·)A .9B .9和﹣9C .3D .3和﹣3【答案】D【思路分析】先化简,再根据平方根的地红衣求解.3±,故选D .【点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a ,则这个数叫做a 的平方根,即x 2=a ,那么x 叫做a 的平方根,记作x =±.例题2:(2021·黑龙江齐齐哈尔·中考真题)下列计算正确的是()A .4=±B .()2234636m n m n =C .24833a a a ⋅=D .33xy x y-=【答案】A【思路分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【解析】A 、4=±,正确,故该选项符合题意;B 、()2234639m n m n =,错误,故该选项不合题意;C 、24633a a a ⋅=,错误,故该选项不合题意;D 、3xy 与3x 不是同类项,不能合并,故该选项不合题意;故选:A .【点拨】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.考向02立方根例题3:(2021·辽宁大连·中考真题)下列计算正确的是()A .2(3=-B=C1=D .1)3+=【答案】B【思路分析】根据二次根式的运算及立方根可直接进行排除选项.【解析】解:A 、(23=,错误,故不符合题意;B =,正确,故符合题意;C 1=-,例题4:(2021·江苏南京·中考真题)一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是()A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n为奇数时,2的n 次方根随n 的增大而增大【答案】C【思路分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【解析】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意;B.5232= ,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设x y =则155153232,28,x y ====1515,x y ∴>且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点拨】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.考向03实数例题5:(2021·山东日照·中考真题)在下列四个实数中,最大的实数是()A .-2BC .12D .0【答案】B【思路分析】根据实数的大小比较方法进行比较即可.【解析】解: 正数大于0,负数小于0,正数大于负数,∴1022>>>-,故选:B .【点拨】本题考查了实数的大小比较,理解“正数大于0,负数小于0,正数大于负数”是正确判断的关键.例题6:(2021·贵州毕节·中考真题)下列各数中,为无理数的是()A .πB .227C .0D .2-【答案】A【思路分析】根据无理数的定义逐项判断即可.【解析】A 、π是无理数,符合题意;B 、223.1428577= 小数点后的142857是无限循环的,则227是有理考向04二次根式的概念与性质例题7:(2021·湖北襄阳·中考真题)x 的取值范围是()A .3x ≥-B .3x ≥C .3x ≤-D .3x >-【答案】A【思路分析】根据二次根式有意义的条件,列出不等式,即可求解.在实数范围内有意义,∴x +3≥0,即:3x ≥-,故选A .【点拨】本题主要考查二次根式有意义的条件,掌握二次根式的被开方式是非负数,是解题的关键.例题8:(2021·浙江杭州·中考真题)下列计算正确的是()A2=B 2=-C 2±D 2=±【答案】A【思路分析】由二次根式的性质,分别进行判断,即可得到答案.2==,故A 正确,C 2=,故B 、D 错误;故选:A .【点拨】本题考查了二次根式的性质,解题的关键是掌握性质进行判断.考向05二次根式的乘除例题9:(2021·湖南株洲·中考真题)计算:4-=()A .-B .-2C .D .【答案】A化简,然后根据乘法法则运算即可.【解析】解:()44--⨯-A .【点拨】本题考查了二次根式的乘法运算,熟悉相关性质是解题的关键.例题10:(2021·广西桂林·中考真题)下列根式中,是最简二次根式的是()AB C D 【答案】D【思路分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方最简二次根式,故本选项不符合题意;C |a ,不是最简二次根式,故本选项不符合题意;D 、符合最简二次根式的定义,是最简二次根式,故本选项正确.故选:D .【点拨】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.考向06二次根式的加减例题11:(2021·广西梧州·中考真题)下列计算正确的是()A=B =C .2=D .2=2【答案】D【思路分析】根据二次根式的性质和二次根式的加法法则和除法法则逐一进行计算,从而得出答案;=A B=选项C 错误;)2=2,选项D 正确;故选:D【点拨】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键例题12:(2021·江苏泰州·中考真题)下列各组二次根式中,化简后是同类二次根式的是()ABC D 【答案】D【思路分析】把每个选项中的不是最简二次根式化为最简二次根式即可作出判断.【解析】A =B =与类二次根式,故此选项错误;C 故此选项错误;D ==,D .【点拨】本题考查了二次根式的化简,同类二次根式的识别等知识,注意二次根式必须化成最简二次根式.微练习一、单选题【答案】B<<∴56<,∴30的算术平方根介于5与6之间.故选:B .2.(2021·江苏·连云港市新海实验中学二模)下列计算:①222+=a a a ,②(1)x y x xy +=+,③46,④236() mn mn =,正确的有()A .1个B .2个C .3个D .4个【答案】B【分析】解:①23a a a +=,故①错误;②(1)x y x xy +=+,故②正确;③446+,故③正确;④2336() mn m n =,故④错误;故正确的有②,③,共2个,故选:B .3.(2021·湖南师大附中博才实验中学一模))A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】B∴56,5和6之间;故选B .4.(2021·广东·珠海市紫荆中学三模)下列四个实数中,最小的数是()A .5-B .14C .0D 【答案】A【分析】解:∵-5<0<14,A .227B C .3.1415926D 【答案】B【分析】解:A .227是分数,属于有理数;B 是无理数;C .3.1415926是有限小数,属于有理数;D 3=是整数,属于有理数;故选:B .6.(2021·重庆·西南大学附中模拟预测)在函数2y x =-中,自变量x 的取值范围是()A .1x >-B .1x ≥-C .1x ≥-且2x ≠D .1x >-且2x ≠【答案】C【分析】解:根据题意得:1020x x +≥⎧⎨-≠⎩,解得:x ≥−1且x ≠2.故选:C .7.(2021·山东兰陵·一模)实数a ,b 在数轴上对应的点的位置如图所示,化简a 的结果是()A .2a b -+B .2a b -C .b -D .b【答案】A【分析】解:由数轴可知,a <0<b ,∴a -b <0∴2a a b a b a =-+-=-;故选:A8.(2021·江苏建邺·二模)2b =-,则b 满足的条件是()A .2b >B .2b <C .2b ≥D .2b ≤【答案】D2b =-∴20b -≥∴2b ≤故选:D .9.(2021·内蒙古包头·三模)下列说法中,真命题有()有意义,则1x >;②已知27α∠=︒,则α∠的补角是153︒;③已知2x =是方程260x x c -+=的一个实数根,则c 的值为8;1≥x ,故错误;②已知27α∠=︒,则α∠的补角是153︒,故正确;③已知2x =是方程260x x c -+=的一个实数根,则22-12+c =0,解得c =8,故正确;④在反比例函数2k y x-=中,若0x >时,y 随x 的增大而增大,则k -2<0,则k 的取值范围是2k <,故错误;故选:B .10.(2021·重庆·字水中学三模))A .5和6之间B .6和7之间C .7和8之间D .8和9之间.【答案】C【分析】解:===== 78∴<介于7和8之间,故选:C .11.(2021·广西·南宁十四中三模)下列属于最简二次根式的是()AB C D 【答案】B【分析】A.3=开方数是分数,不是最简二次根式,故此选项不符合题意;B.是最简二次根式,故此选项符合题意;3=含有能开得尽方的因数,不是最简二次根式,故此选项不符合题意;D.10=被开方数是分数,不是最简二次根式,故此选项不符合题意;故选B 12.(2021·甘肃庆阳·二模))A B .3C .D .【答案】D【分析】解:S =D13.(2021·福建·厦门市第九中学二模))AB C .3D合题意;C.3 D.=故选D.14.(2021·广东·江门市第二中学二模)下列运算正确的是()B.AC.x5•x6=11x D.(x2)5=7x【答案】C【分析】解:A不是同类二次根式,不能合并,故A选项错误;B、12a,故B选项错误;C、x5•x6=11x,故C选项正确;D、(x2)5=10x,故D选项错误,故选:C.15.(2021·福建南平·二模)下列运算正确的是()A=B=C2=D=【答案】A【分析】解:A=B:选项错误,不符合题意;C:选项错误,不符合题意;D:选项错误,不符合题意;故答案选A.二、填空题16.(2021·陕西·交大附中分校模拟预测)______.【答案】1或2.【分析】解:∵23=∴23<<,1,2,故答案为:1或2.17.(2021·江苏·连云港市新海实验中学二模)______________.【答案】2【分析】解:原式=2,故答案为:2.|=__.18.(2021·宁夏·银川唐徕回民中学一模)30+|﹣119.(2021·陕西·西安市铁一中学模拟预测)112-⎛⎫= ⎪⎝⎭____________.【答案】2-【分析】解:原式2=2=.故答案为2-.20.(2021·黑龙江·哈尔滨市萧红中学三模)=_______.【答案】32【分析】解:原式=32=.故答案为:32.21.(2021·浙江·杭州市采荷中学二模)=______.【答案】22=,故答案为:2.22.(2021·山东·济宁学院附属中学三模)已知1y ==_______.【答案】2【分析】 1y =,2020x x -≥⎧⎨-≥⎩,解得2x =,1y =∴,∴2=.故答案为:2.23.(2021·山东省诸城市树一中学三模)已知1a =,1b -,则33a b ab -=__________.【答案】【分析】解:33a b ab -()22ab a b =-()()ab a b a b =+-,∵1a +,1b =,∴)11211ab ==-=,11a b +-=112a b -=+-=,24.(2021·陕西·交大附中分校模拟预测)21|3|()2--+-.【答案】4【分析】解:原式=3﹣3+4=4.25.(2021·湖南师大附中博才实验中学二模)计算:201332-⎛⎫+-+- ⎪⎝⎭【答案】【分析】解:原式=143+-+=26.(2021·浙江·绍兴市柯桥区杨汛桥镇中学二模)计算:11()(53--.【答案】2-【分析】解:11()(53--35=-+2=.27.(2021·陕西·西北工业大学附属中学模拟预测)1124-⎛⎫+ ⎪⎝⎭21124-⎛⎫+ ⎪⎝⎭42=+2=.。