3 线性控制系统的能控性与能观测性-spzhang
- 格式:ppt
- 大小:983.50 KB
- 文档页数:136
C 1, C 2 Cn 满足G = C ? = C 3性无关。
,则把向量 X 「X 2 X n 叫做线11 1 0L 1X i 二 01 1X 2 二 1X 3_0 _0第三章 线性控制系统的能控性和能观性在现代控制理论中,能控性和能观性是卡尔曼(Kalma n )在I960年首先提出来的,它是最优控制和最优估值的设计基 础。
能控性和能观性是分别分析 u(t)对状态x(t)的控制能力 以及输出y(t)对状态x(t )的反映能力。
§3—1能控性的定义能控性所研究的只是系统在控制作用 u(t)的作用下,状态 矢量x(t)的转移情况,而与输出y(t)无关。
矢量的线性无关与线性相关:如果G xi * C 2x2 C 3X 3C n xn= 0式中的常数无关。
若向量X i ,x 2…x n 中有一个向量Xi 为其余向量的线性组 合,□便是线性例如向量C nX i不全为零。
故为线性相关。
具有约旦标准型系统的能控性判据 1 •单输入系统先将线性定常系统进行状态变换, 又例如在式中X 3X 2, X i3X ^ 0式中系数并把状态方程的A 阵和B相关。
阵化为约旦标准型(A, E?),再根据B 阵确定系统的能控性。
具有约旦标准型系统矩阵的单输入系统,状态方程为即:Xi、C j X j j=i j-i则称向量X i ,X 2 x n 为线性相关。
例如向量X iX3二 2_4便是线性x 八 x bu 或 x 二 Jx bu2,各根互异。
其中:(特征值有重根的)10 11 0111 Jnb 2bX11C2c 1xc 2x 2y cy(t)u(t)b1X1C2_b n卜面列举两个二阶系统,对其能控性加以剖析。
「0 例:1)厂匕x 2 二 2X 2 pu 0 0X u 2 巾2m 2故为状态不完全能控的,11X_b 2例:2)y约旦型)c 2 ]xX 厂'1x 1 x 2X 2= 2X 2 b ?u (为y = GN c 2x 2lL (t )从上式看出X 1与u 无关,即不受u 控制,因而只有一个特— 01 殊状态。