线性系统的能控性和能观性
- 格式:ppt
- 大小:994.50 KB
- 文档页数:21
第4章(1)线性控制系统的能控性和能观性第四章线性控制系统的能控性和能观性在现代控制理论中,能控性(Controllability)和能观性(Observ- ability)是两个重要的概念,它是卡尔曼(Kalman)在1960年提出的,是最优控制和最优估计的设计基础。
能观(测)性针对的是系统状态空间模型中的状态的可观测性,它反映系统的内部状态x(t)(通常是不可以直接测量的)被系统的输出量y(t)(通常是可以直接测量的)所反映的能⼒。
能控性严格上说有两种,⼀种是系统控制输⼊u(t)对系统内部状态x(t)的控制能⼒,另⼀种是控制输⼊u(t)对系统输出y(t)的控制能⼒。
但是⼀般没有特别指明时,指的都是状态的可控性。
所以,系统的能控性和能观性研究⼀般都是基于系统的状态空间表达式的。
4-1 线性连续定常系统的能控性定义对于单输⼊n 阶线性定常连续系统bu Ax x+= 若存在⼀个分段连续的控制函数u(t),能在有限的时间段 []f t t ,0内把系统从0t 时刻的初始状态()0t x 转移到任意指定的终态()f t x ,那么就称系统在0t 时刻的状态()0t x 是能控的;如果系统每⼀个状态()0t x 都能控,那么就称系统是状态完全可控的。
反之,只要有⼀个状态不可控,我们就称系统不可控。
对于线性定常连续系统,为简便计,可以假设00=t ,()0=f t x ,即00=t 时刻的任意初始状态()0x ,在有限时间段转移到零状态()0=f t x (原点)。
4-2线性连续定常系统的能控性判别4-2-1具有约旦标准型系统的能控性判别 1.单输⼊系统具有约旦标准型系统bu x x+Λ==Λn λλλλ0000000000000321n λλλλ≠≠≠≠ 321即为n 个互异根或bu Jx x+==++n m m J λλλλλλ000000000000000100000000121111m 个重根1λn-m 个互异根n m m λλλ≠≠≠++ 21 例:分析下列系统的能控性(1)u b x x+??=221000λλ[]x c c y 21=解:?=111x xλ 1x 与u ⽆关,即不受u 控制 ?+=u b x x2222λ 2x 为能控状态该系统为状态不完全能控,因⽽为不能控系统。
3.1 线性定常系统的能控性线性系统的能控性和能观测性概念是卡尔曼在1960年首先提出来的。
当系统用状态空间描述以后,能控性、能观测性成为线性系统的一个重要结构特性。
这是由于系统需用状态方程和输出方程两个方程来描述输入-输出关系,状态作为被控量,输出量仅是状态的线性组合,于是有“能否找到使任意初态转移到任意终态的控制量”的问题,即能控性问题。
并非所有状态都受输入量的控制,有时只存在使任意初态转移到确定终态而不是任意终态的控制。
还有“能否由测量到的由状态分量线性组合起来的输出量来确定出各状态分量”的问题,即能观测性问题。
并非所有状态分量都可由其线性组合起来的输出测量值来确定。
能控性、能观测性在现代控制系统的分析综合中占有很重要的地位,也是许多最优控制、最优估计问题的解的存在条件,本章主要介绍能控性、能观测性与状态空间结构的关系。
第一节线性定常系统的能控性能控性分为状态能控性、输出能控性(如不特别指明便泛指状态能控性)。
状态能控性问题只与状态方程有关,下面对定常离散系统、定常连续系统分别进行研究(各自又包含单输入与多输入两种情况):一、离散系统的状态可控性引例设单输入离散状态方程为:初始状态为:用递推法可解得状态序列:可看出状态变量只能在+1或-1之间周期变化,不受的控制,不能从初态转移到任意给定的状态,以致影响状态向量也不能在作用下转移成任意给定的状态向量。
系统中只要有一个状态变量不受控制,便称作状态不完全可控,简称不可控。
可控性与系统矩阵及输入矩阵密切相关,是系统的一种固有特性。
下面来进行一般分析。
设单输入离散系统状态方程为:(3-1)式中,为维状态向量;为纯量,且在区间是常数,其幅值不受约束;为维非奇异矩阵,为系统矩阵;为维输入矩阵:表示离散瞬时,为采样周期。
初始状态任意给定,设为;终端状态任意给定,设为,为研究方便,且不失一般性地假定。
单输入离散系统状态可控性定义如下:在有限时间间隔内,存在无约束的阶梯控制信号,,,能使系统从任意初态转移到任意终态,则称系统是状态完全可控的,简称是可控的。
4-6线性系统的结构分解能控子空间+不能控子空间能观子空间+不能观子空间4-6-1按能控性分解设线性定常系统⎩⎨⎧=+=CxyBuAxx是状态不完全能控的,其能控性判矩阵:[]BAABBM n1-=的秩()nnMrank<=1则存在非奇异变换zRxc=变换为⎩⎨⎧=+=zCyuBzAz其中()1121nnnzzz-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=()()11112212111nnnnnnAAAARRAcc--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==-,()11110nnnBBRBc-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==-[]()1121nnnCCCRCc-==[]n n c R R R R R 121=前1n 个列矢量为M 中1n 个线性无关的列,另外1n n -个列矢量,在确保c R 非奇异的条件下,完全是任意的。
分解为能控的1n 维子系统:21211111z A u B z A z++= 和不能控的1n n -维子系统:2222z A z =例:设线性定常系统如下,判别其能控性,若不是完全能控的,试将该系统按能控性分解。
u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=011310301100 []x y 210-=解:(1)判别能控性[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==2103111012b A Ab bM因为 ()n M rank =<=32,所以,系统是不完全能控的。
(1) 构造非奇异变换阵c R⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001c R (第三列的元素任意选取,确保c R 为非奇异)非奇异变换 z R x c =u z u z bu R z AR R zc c c ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=----0011002211100111100110011100110013103011001100110011111[]z z CR y c 211--==分解为二维能控子系统:能控标准Ⅱ型u z z z ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡--=01212110211 和一维不能控子系统:[]221z z-= 4-6-2按能观性分解设线性定常系统 ⎩⎨⎧=+=Cxy Bu Ax x是状态不完全能观的,其能控性判矩阵:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=-1n CA CA C N 的秩 ()n n N rank <=1 则存在非奇异变换 z R x 0=变换为 ⎩⎨⎧=+=z C y uB z A z其中 ()1121n n n z z z -⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=()()11112221110100n n n n n n A A A AR R A --⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==- , ()112110n n n B B B R B -⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==-[]()111n n n C CR C c -== , ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=-''12'110'n n R R R R R前1n 个行矢量为N 中个1n 个线性无关的行,另外1n n -个行矢量,在确保1-R 非奇异的条件下,完全是任意的。