第二十届华杯赛决赛小中组C卷.pdf
- 格式:pdf
- 大小:203.80 KB
- 文档页数:3
华杯赛试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x) = 2x + 3,求f(-1)的值。
A. 1B. -1C. -5D. 5答案:C2. 若a和b是两个不同的实数,且a^2 + b^2 = 0,下列哪个选项是正确的?A. a = 0,b ≠ 0B. a ≠ 0,b = 0C. a = 0,b = 0D. a ≠ 0,b ≠ 0答案:C3. 计算下列几何图形的面积:一个半径为3的圆。
A. 9πB. 18πC. 27πD. 36π答案:C4. 一个数列的前三项分别是1, 2, 4,每一项都是前一项的两倍,这个数列的第五项是多少?A. 16B. 32C. 64D. 128答案:B二、填空题(每题5分,共20分)5. 一个等差数列的首项是5,公差是3,那么这个数列的第10项是________。
答案:286. 已知一个直角三角形的两条直角边长分别为6和8,那么这个三角形的斜边长是________。
答案:107. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是________。
答案:24立方厘米8. 一个分数的分子是15,分母是20,化简后这个分数是________。
答案:3/4三、解答题(每题15分,共30分)9. 已知一个二次函数y = ax^2 + bx + c,其中a = 2,b = -3,c = 1,求这个函数的顶点坐标。
答案:顶点坐标为(3/2, -5/2)。
10. 一个班级有50名学生,其中30名男生和20名女生。
如果随机选择一名学生,那么选中男生的概率是多少?答案:选中男生的概率是3/5。
第二十届华罗庚金杯少年数学邀请赛决赛试题(初一组)(时间: 2015年4月11日10:00~11:30)一、选择题 (每小题10分, 共80分)1. 计算: ⎪⎪⎭⎫ ⎝⎛++++⨯10241108134122112048 = . 2. 一堆彩球只有红、黄两色. 先数出的50个球中有49个红球, 此后, 每数出8个球中都有7个红球, 恰好数完. 已数出的球中红球不少于90%. 这堆彩球最多有 个.3. 正整数a ,b ,c ,d 满足4332<<<d c b a , 当d c b a +++最小时, c = , d = .4. 圆形跑道上等距插着2015面旗子, 甲与乙同时同向从某面旗子的位置出发,当甲与乙再次同时回到出发点时, 甲跑了23圈, 乙跑了13圈. 不算起始点旗子位置, 则中间有 次甲正好在旗子位置追上乙.5. 现有2015张卡片, 每张上写有数字1+或1-. 如果每次指着其中的三张卡片问:“这三张卡片所写的数字的乘积是多少?”并得到正确回答. 那么, 至少问 次才能确定这2015张卡片所写的数字的乘积.6. 设a , b , c 为1到9中的三个不同整数, 则c b a abc ++的最大值是 , 最小值是 .(abc 是个三位数)7. 如右图, 正六边形中两个等边三角形的面积都为30平方厘米,那么正六边形的面积是 平方厘米.8. 从一副扑克牌中抽走一些牌, 在剩下的牌中至少要数出20张, 才能确保数出的牌中有两张同花色的牌的点数和为15. 那么最多抽走 张牌, 最少抽走 张牌. (J 、Q 、K 的点数分别为11, 12, 13, 大、小王的点数为0;一副扑克牌有54张牌, 其中52张是正牌, 另2张是副牌(大王和小王). 52张正牌又均分为13张一组, 并以黑桃、红桃、草花、方块四种花色表示各组, 每组花色的牌包括从1至10(1通常表示为A )以及J 、Q 、K 标示的13张牌).二、解答下列各题(每小题10分, 共40分, 要求写出简要过程)9. 算式20146422013531⨯⨯⨯⨯+⨯⨯⨯⨯ 的值被2015除的余数为多少?10. (1)右图共含有几个四边形? (2) 在右图的每个顶点处标上1或1-, 共有4个1和4个1-, 将每个四边形4个顶点处的数相乘, 再将所得的所有的积相加, 问:至多有多少个不同的和?11. 已知,2343111=++=-+ab c ac b bc a a c b ,,)(024222=---c b b c c b b 与c 同号, 且.c b 2≠ 求.444c b a ++12. 加工十个同样的木制玩具, 需用260毫米和370毫米长的标准木方分别为30根和40根. 仓库里有长度分别为900毫米、745毫米、1385毫米的三种标准木方, 用这三种标准木方锯出所需长度的木方, 每锯一次要损耗5毫米长木方. 问是否可以用三种木方, 每种木方选一些, 恰好锯出十个玩具所需的木方?如果可以, 要求锯的次数最少, 那么三种木方各选多少根?(说明:一根木方被锯一次要得到两个长度大于0的木方, 即不能从一端锯. )三、解答下列各题(每小题15分, 共30分, 要求写出详细过程)13. 如图, △ABC 中, D 是BC 上一点且32::=DB CD , E 是AB 上一点且12::=EB AE , F 是CA 的延长线上一点且34::=AF CA . 若△DFE 的面积为1209, 求△ABC 的面积.14. 求使得n n 22+为完全平方数的自然数n .。
第二十一届华罗庚金杯少年数学邀请赛决赛试题A (小学中年级组)(时间: 2016年3月12日10:00~11:30)一、填空题(每小题 10分, 共80分)1. 计算: =-⨯⨯+⨯÷⨯-⨯)332525624()86797698(________.2. 从1, 2, 3, 4, 5这5个数中选出4个不同的数填入下面4个方格中□ + □ > □ + □,有________种不同的填法使式子成立.(提示: 3251+>+和3215+>+是不同的填法.)3. 将下图左边的大三角形纸板剪3刀, 得到4个大小相同的小三角形纸板 (第一次操作), 见下图中间. 再将每个小三角形纸板剪3刀, 得到16个大小相同的更小的三角形纸板 (第二次操作), 见下图右边. 这样继续操作下去, 完成前六次操作共剪了________刀.4. 一个两位数与109的乘积为四位数, 它能被23整除且商是一位数, 这个两位数最大等于________.5. 右图中的网格是由6个相同的小正方形构成. 将其中4个小正方形涂上灰色, 要求每行每列都有涂色的小正方形. 经旋转后两种涂色的网格相同, 则视为相同的涂法, 那么有________种不同的涂色方法.学校____________ 姓名_________ 参赛证号密 封 线 内 请 勿 答 题第二十一届华罗庚金杯少年数学邀请赛决赛试题(小学中年级组)6.有若干个连续的自然数, 任取其中4个不同的数相加, 可得到385个不同的和,则这些自然数有________个.7.在44 方格网的每个小方格中都填有一个非零自然数, 每行、每列及每条对角线上的4个数之积都相等. 右图给出了几个所填的数, 那么五角星所在的小方格中所填的数是________.8.甲、乙两人在一条长120米的直路上来回跑, 甲的速度是5米/秒, 乙的速度是3米/秒. 若他们同时从同一端出发跑了15分钟, 则他们在这段时间内共迎面相遇________次(端点除外).二、简答题(每小题15分, 共60分, 要求写出简要过程)9.右图中有一个边长为6厘米的正方形ABCD与一个斜边长为8厘米的等腰直角三角形AEF, E在AB的延长线上, 则图中阴影部分的面积为多少平方厘米?10.有10个两两不同的自然数, 其中任意5个的乘积是偶数, 全部10个数的和是奇数. 则这10个自然数的和最小是多少?11.在1到200这200个自然数中任意选数, 至少要选出多少个才能确保其中必有2个数的乘积等于238?12.最初, 盒子中有三张卡片, 分别写着数1, 2, 3. 每次, 从盒子里取出两张卡片,将上面的数之和写到另一张空白卡片上, 再把三张卡片放回盒子. 如此5次后, 除了最后一张写数的卡片外, 其它的卡片都至少取出过一次, 不超过两次. 问: 此时盒子里面卡片上的数最大为多少?第二十一届华罗庚金杯少年数学邀请赛决赛试题答案(小学中年级组)第二十一届华罗庚金杯少年数学邀请赛决赛试题A参考答案(小学中年级组)一、填空(每题10 分, 共80分)二、解答下列各题(每题15 分, 共60分, 要求写出简要过程)9.【答案】22平方厘米10.【答案】5111.【答案】19812.【答案】28。
华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是华杯赛的全称?A. 中国数学奥林匹克竞赛B. 中国数学华罗庚杯竞赛C. 中国数学华杯赛D. 全国青少年数学华罗庚杯竞赛答案:D2. 华杯赛的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 华杯赛的参赛对象是?A. 小学生B. 初中生C. 高中生D. 大学生答案:B4. 华杯赛的试题难度级别是?A. 初级B. 中级C. 高级D. 专家级答案:C二、填空题(每题5分,共20分)1. 华杯赛的全称是________。
答案:全国青少年数学华罗庚杯竞赛2. 华杯赛的举办周期是________。
答案:每年一次3. 华杯赛的参赛对象是________。
答案:初中生4. 华杯赛的试题难度级别是________。
答案:高级三、解答题(每题10分,共30分)1. 已知一个等差数列的前三项分别为2,5,8,求该数列的第10项。
答案:该等差数列的公差为3,所以第10项为2 + 3 * (10 - 1) = 31。
2. 一个圆的半径为5,求该圆的面积。
答案:圆的面积公式为πr²,所以面积为π * 5² = 25π。
3. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
答案:根据勾股定理,斜边长度为√(3² + 4²) = 5。
四、证明题(每题10分,共30分)1. 证明:如果一个三角形的两边相等,则这个三角形是等腰三角形。
答案:设三角形ABC中,AB = AC,根据等腰三角形的定义,如果一个三角形有两边相等,则这个三角形是等腰三角形,所以三角形ABC是等腰三角形。
2. 证明:如果一个四边形的对角线互相垂直平分,则这个四边形是菱形。
答案:设四边形ABCD中,对角线AC和BD互相垂直平分,根据菱形的定义,如果一个四边形的对角线互相垂直平分,则这个四边形是菱形,所以四边形ABCD是菱形。
2015年第二十届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组C卷)一、选择题(每小题10分,共60分).1.(10分)计算:(﹣+﹣+)×120﹣÷()A.42 B.43 C.15D.162.(10分)如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线,这两条直线成45度角,最高的小树高2.8米,最低的小树高峰1.4米,那么从左向右数第4棵树的高度是()米.A.2.6 B.2.4 C.2.2 D.2.03.(10分)春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、丙、丁4位同学有如下对话:甲:“丙,丁之中至少有1人捐了款”乙:“丁,甲之中至多有1人捐了款”丙:“你们3人之中至少有2人捐了款”丁:“你们3人之中至多有2人捐了款”已知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这2位同学是()A.甲,乙B.丙,丁C.甲,丙D.乙,丁4.(10分)六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高的99分,最低的76分,那么按分数从高到低居第3位的同学的分数至少是()A.94 B.95 C.96 D.975.(10分)如图,BH是直角梯形ABCD的高,E为梯形对角线AC上一点,如果△DEH、△BEH、△BCH的面积依次为56、50、40,那么△CEH的面积是()A.32 B.34 C.35 D.366.(10分)一个由边长为1的小正方形组成的n×n的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的4个角上的小正方形不全同色,那么正整数n的最大值是()A.3 B.4 C.5 D.6二、填空题:(每小题10分,满分40分)7.(10分)在每个格子中填入1﹣6中的一个,使得每行、每列及每个2×3长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数“相约华杯”是.8.(10分)整数n一共有10个因数,这些因数从小到大排列,第8个是.那么整数n的最大值是.9.(10分)在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是平方厘米,两块阴影部分的周长差是厘米.(π取3.14)10.(10分)A地,B地,C地,D地依次分布在同一条公路上.甲,乙,丙三人分别从A地,B地,C地同时出发,匀速向D地行进.当甲在C地追上乙时,甲的速度减少40%,当甲追上丙时,甲的速度再次减少40%,甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少25%;乙追上丙后再行50米,三人同时到D地.已知乙出发时的速度是每分钟60米,那么甲出发时的速度是每分钟米,A、D两地间的路程是米.2015年第二十届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组C卷)参考答案与试题解析一、选择题(每小题10分,共60分).1.(10分)计算:(﹣+﹣+)×120﹣÷()A.42 B.43 C.15D.16【分析】首先对(﹣+﹣+)进行拆分,然后用所得的结果减去除以所得的商,求出算式的值是多少即可.【解答】解:(﹣+﹣+)×120﹣÷=(+﹣﹣++﹣﹣++)×120﹣=(+)×120﹣=30+×120﹣=42故选:A.2.(10分)如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线,这两条直线成45度角,最高的小树高2.8米,最低的小树高峰1.4米,那么从左向右数第4棵树的高度是()米.A.2.6 B.2.4 C.2.2 D.2.0【分析】因为∠A=45°,最高的小树高2.8米,所以AC=2.8米,又因为树根成一条直线,树顶也成一条直线,所以所有的树都互相平行,所以AB=1.4米,BC=AC﹣AB=1.4米,因为这排树的间距相同,则每个间距是1.4÷7=0.2米,则从左向右数第4棵树的高度:0.2×4+1.4,据此解答即可.【解答】解:因为:树根成一条直线,树顶也成一条直线,∠A=45°,最高的小树高2.8米,最低的小树高峰1.4米,所以AC=2.8米,AB=1.4米,BC=AC﹣AB=1.4米,又因为:这排树的间距相同,所以:1.4÷7=0.2(米)0.2×4+1.4=0.8+1.4=2.2(米)答:那么从左向右数第4棵树的高度是2.2米.故选:C.3.(10分)春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、丙、丁4位同学有如下对话:甲:“丙,丁之中至少有1人捐了款”乙:“丁,甲之中至多有1人捐了款”丙:“你们3人之中至少有2人捐了款”丁:“你们3人之中至多有2人捐了款”已知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这2位同学是()A.甲,乙B.丙,丁C.甲,丙D.乙,丁【分析】因为有2位同学捐了款,所以根据:丙:“你们3人之中至少有2人捐了款,说明捐款的只能是甲乙丁中的两个人,而丙没捐钱;甲:“丙,丁之中至少有1人捐了款”因为丙没捐钱,所以只能是丁捐款;乙:“丁,甲之中至多有1人捐了款”只能是丁,所以甲没捐款;这恰好印证了丁:“你们3人之中至多有2人捐了款”是正确的.据此解答即可.【解答】解:根据分析可得:丙:“你们3人之中至少有2人捐了款,说明捐款的只能是甲乙丁中的两个人,而丙没捐钱;甲:“丙,丁之中至少有1人捐了款”因为丙没捐钱,所以只能是丁捐款;乙:“丁,甲之中至多有1人捐了款”只能是丁,所以甲没捐款;这恰好印证了丁:“你们3人之中至多有2人捐了款”是正确的,只有乙和丁捐了款.故选:D.4.(10分)六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高的99分,最低的76分,那么按分数从高到低居第3位的同学的分数至少是()A.94 B.95 C.96 D.97【分析】要求第三名同学至少要考多少分,知道六名同学的总平均分,能求出总成绩,用总成绩﹣最高分﹣最低分=另四名同学的总成绩,要想第3个同学成绩最小,则第2个同学成绩取最大值为:98,进而求出另三位同学的总成绩,进而根据“总成绩÷总人数=平均分”能求出另三名同学的平均分,继而分析、推导得出所求问题的答案.【解答】解:92.5×6﹣99﹣76=380(分),由于最高分是99分,所以第二个的最好成绩最多是:98剩余三人成绩和为:380﹣98=282(分),第3个同学成绩最小,第4、5个同学的成绩尽可能接近第三个同学的成绩,则这3个数相差为1,282÷3=94(分),则第三位同学至少是:94+1=95(分).答:第三名至少得95分.故选:B.5.(10分)如图,BH是直角梯形ABCD的高,E为梯形对角线AC上一点,如果△DEH、△BEH、△BCH的面积依次为56、50、40,那么△CEH的面积是()A.32 B.34 C.35 D.36【分析】如下图所示:分别过点E作EF⊥DC,EG⊥BH,连接AF,BF,BD,由等底等高的三角形面积相等,可得S△BDF=S△ADF,S△ADC=S△BDC,因此有:SS△ADC﹣S△ADE=S△BDC﹣S△BDF=S△BFC,而S△BFC=S△BFH+S△BCH=S△BEH+S△BCH=90;△CDE=因此S△CHE=S△EDC﹣S△HDE=90﹣56=34,据此即可解决.【解答】解:如上图所示,分别过点E作EF⊥DC,EG⊥BH,连接AF,BF,BD,则S△BDF=S△ADF,S△ADC=S△BDC,所以S△CDE=S△ADC﹣S△ADE=S△BDC﹣S△BDF=S△BFC,又因为S△BFC=S△BFH+S△BCH=S△BEH+S△BCH=90,所以S△CHE=S△EDC﹣S△HDE=90﹣56=34.故选:B.6.(10分)一个由边长为1的小正方形组成的n×n的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的4个角上的小正方形不全同色,那么正整数n的最大值是()A.3 B.4 C.5 D.6【分析】此题要充分利用抽屉原理和假设推理.根据题目所给的选项不妨选一个中间的数5为假设n的值,进行一步步地推理,进而推出与题目要求矛盾.从而得出n的取值范围,即得出答案.【解答】解:①假设n=5,(由抽屉原理知)第一行中至少有3个格子颜色相同.不妨设前3格为黑色(如图1).在这3个黑格下方可以分割为4个横着的3×1的长方形,若其中有一个中有2个黑格(如图2),则存在着图中的粗线长方形4个角上的小正方形都是黑格;所以这4个横着的3×1的长方形中,每个至多1个黑格.②假设这4个横着的3×1的长方形中,有两个对应格子颜色都一样(如图3),则一样存在图中的粗线长方形4个角上的小正方形都是白格;而3×1的长方形中至多1个黑格的只有如图4的这4种.如果这4种都存在的话如图5,则同样存在图中粗线长方形4个角上的小正方形都是白格;这均与题目要求的矛盾.所以,n<5,正整数n的最大值是4.而图6给出了n=4的一种构造.故选:B.二、填空题:(每小题10分,满分40分)7.(10分)在每个格子中填入1﹣6中的一个,使得每行、每列及每个2×3长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数“相约华杯”是4123 .【分析】如图:因为第三行存在1、3、4,所以A为2,5,6之一,而3与A的和是质数,所以A为2.在A所在的长方形中,还剩下1、4、5、6没有使用.而3与“相”的和是质数,所以“相”是4.“相”与“约”的和为质数,“约”为1,“约”与“月”的和为质数,“月”为6,剩下的C为5.第三行只剩下数字5,所以B为5;在B所在的长方形中,还剩下2、3、6没有使用.而4与“杯”的和是质数,所以“杯”为3,“杯”与”“华”的和为质数,所以“华”为2,剩下的D就是6;所以四位数“相约华杯”是4123,据此解答即可.【解答】解:如图:因为第三行存在1.、3、4,所以A为2,5,6之一,而3与A的和是质数,所以A为2.在A所在的长方形中,还剩下1、4、5、6没有使用.而3与“相”的和是质数,所以“相”是4.“相”与”“约”的和为质数,“约”为1,“约”与”“月”的和为质数,“月”为6,剩下的C为5.第三行只剩下数字5,所以B为5;在B所在的长方形中,还剩下2、3、6没有使用.而4与“杯”的和是质数,所以“杯”为3,“杯”与”“华”的和为质数,所以“华”为2,剩下的D就是6;所以四位数“相约华杯”是4123.故答案为:4123.8.(10分)整数n一共有10个因数,这些因数从小到大排列,第8个是.那么整数n的最大值是162 .【分析】由于整数的因数都是成对出现,则这10个约数必然是1、、3、、、、、、、n,立即可以填出1、2、3、、、、、、、n,也就是说n必然含有质因数2和3,然后结合因数个数定理可求解.【解答】解:根据分析可知10个因数分别为1、2、3、、、、、、、n,根据因数个数定理10=1×(9+1)=(1+1)×(4+1),由于含质因数2和3,则n应为21×34或24×31,其中21×34=162更大.故答案为:162.9.(10分)在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是15975 平方厘米,两块阴影部分的周长差是485 厘米.(π取3.14)【分析】(1)如图:扇形ABC的面积=①+②+③,扇形BCD的面积=②+③+④,正方形ABCD 的面积=①+②+③+④+⑤,所以扇形ABC的面积+扇形BCD的面积﹣正方形ABCD的面积=②+③﹣⑤,据此可求出两块阴影部分面积的差是多少;(2)连结BE、CE,因BC=BE=CE,所以三角形BCE是等边三角形,所以扇形BCE的圆心角是60°,扇形CED的圆心角是30°,据此可分别阴影部分的周长是多少,再相减即可.【解答】解:(1)S扇形ABC=①+②+③S扇形BCD=②+③+④S正方形ABCD=①+②+③+④+⑤,S扇形ABC+S扇形BCD﹣S正方形ABCD的=②+③﹣⑤③﹣⑤=S扇形ABC+S扇形BCD﹣S正方形ABCD的﹣②=3.14×3002÷4+3.14×3002÷4﹣300×300﹣3.14×(300÷2)2÷2=3.14×90000÷4+3.14×90000÷4﹣300×300﹣3.14×22500÷2=70650+70650﹣90000﹣35325=15975(平方厘米)(2)连结BE、CE阴影部分③的周长是×3.14×300×2+3.14×300÷2=628+471=1099(厘米)阴影部分⑤的周长是×3.14×300×2+300=314+300=614(厘米)1099﹣614=485(厘米)答:两块阴影部分的面积差是 15975平方厘米,两块阴影部分的周长差是485厘米.故答案为:15975,485.10.(10分)A地,B地,C地,D地依次分布在同一条公路上.甲,乙,丙三人分别从A地,B地,C地同时出发,匀速向D地行进.当甲在C地追上乙时,甲的速度减少40%,当甲追上丙时,甲的速度再次减少40%,甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少25%;乙追上丙后再行50米,三人同时到D地.已知乙出发时的速度是每分钟60米,那么甲出发时的速度是每分钟125 米,A、D两地间的路程是1880 米.【分析】由于同时到达,所以甲追上丙后二者速度相等,乙追上丙后二者速度相等.乙出发时的速度是每分钟60米,遇到丙后速度变为60×(1﹣25%)=45(米/分),所以丙的速度为45米/分,可以推知甲在追上丙后的速度变为45米/分,在追上乙后追上丙之前速度为45÷(1﹣40%)=75米/分,甲出发时的速度为75÷(1﹣40%)=125(米/分).甲在C地追上乙,设在此时起追上丙花了t分钟,则在乙追上丙时也追上了甲,此时甲走的路程为(75t+45×9)米,乙走的路程为60×(t+9)米,列方程为:75t+45×9=60×(t+9),解得t=9.由于此后又走了50米到达D地,所以CD的距离为75t+45×9+50=1130(米).由于甲从C地花了9分钟追上乙,所以此时丙到C的距离为75×9﹣45×9=270(米),即甲从A地到C地,丙走了270÷45=6(分钟),那么AC的距离为125×6=750(米),所以AD得距离为1130+750=1880(米).【解答】解:遇到丙后速度变为:60×(1﹣25%)=60×0.75=45(米/分)甲在追上乙后追上丙之前速度为:45÷(1﹣40%)=45÷0.6=75(米/分)甲出发时的速度为:75÷(1﹣40%)=75÷0.6=125(米/分)甲在C地追上乙,设在此时起追上丙花了t分钟,得:75t+45×9=60×(t+9)75t+405=60t+54015t=135t=9CD的距离为:75t+45×9+50=75×9+405+50=1130(米)甲从C地花了9分钟追上乙,所以此时丙到C的距离为:75×9﹣45×9=(75﹣45)×9=270(米)甲从A地到C地,丙走了:270÷45=6(分钟),那么AC的距离为:125×6=750(米),所以AD得距离为1130+750=1880(米).答:甲出发时的速度是每分钟125米,A、D两地间的路程是1880米.故答案为:125,1880.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 11:00:31;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
第 2 页 共 2 页第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学中年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 计算: 124+129+106+141+237500113-+=( ).(A )350 (B )360 (C )370 (D )3802.如右图所示, 韩梅家的左右两侧各摆了2盆花. 每次, 韩梅按照以下规则往家中搬一盆花: 先选择左侧还是右侧,然后搬该侧离家最近的. 要把所有的花搬到家里, 共有( )种不同的搬花顺序.(A )4 (B )6 (C )8 (D )103.在桌面上, 将一个边长为1的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠, 且拼接的边完全重合, 则得到的新图形的边数为( ).(A )8 (B )7 (C )6 (D )54.甲、乙、丙、丁四支足球队进行比赛. 懒羊羊说: 甲第一, 丁第四; 喜羊羊说: 丁第二, 丙第三; 沸羊羊说: 丙第二, 乙第一. 每个的预测都只对了一半, 那么, 实际的第一名至第四名的球队依次是( ).(A )甲乙丁丙 (B )甲丁乙丙 (C )乙甲丙丁 (D )丙甲乙丁第 2 页共2 页5.如右图, 在55 的空格内填入数字, 使每行、每列及每个粗线框中的数字为1, 2, 3, 4, 5, 且不重复. 那么五角星所在的空格内的数字是().(A)1 (B)2(C)3 (D)46.在除法算式中, 被除数为2016, 余数为7, 则满足算式的除数共有()个.(A)3 (B)4 (C)5 (D)6二、填空题(每小题10 分, 共40分)7.动物园里有鸵鸟和梅花鹿若干, 共有腿122条.如果将鸵鸟与梅花鹿的数目互换, 则应有腿106条, 那么鸵鸟有只, 梅花鹿有头.8.某年, 端午节距离儿童节和父亲节的天数相同, 在月历中与六月最后一天同列, 父亲节是六月的第三个星期日, 则该年的父亲节是六月日.(右图是某个月的月历示意图)9.在一个六位数中, 任何3个连续排列的数字都构成能被6或7整除的三位数,则这个六位数最小是.10.小虎用6个边长均为1的等边三角形在桌面上无重叠地拼接图形, 每个三角形都至少有一条边与另一个三角形的一条边完全重合, 右图是拼接出的两个图形. 那么, 在所有拼接出的图形中, 最小的周长是.。