2016年第21届天津华杯赛初赛初二组真题(扫描版,含答案)
- 格式:doc
- 大小:703.00 KB
- 文档页数:4
2016年全国初中数学联合竞赛(初二年级)试题 第一试(3月20日上午8:30 - 9:30) 考生注意:1.本试两个大题共10个小题,全卷满分70分. 2.用圆珠笔或钢笔作答. 3.解题书写不要超出装订线. 一、选择题(本题满分42分,每小题7分) 本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得分. *1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知23t =-,a 是t 的小数部分,b 是t -的小数部分,则112b a -= ( ) .A 12 .B 32 .C 1 .D 3 *2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ) .A 9种 .B 10种 .C 11种 .D 12种 3.如图,P 为ABC ∆内一点,070,BAC ∠=0120,BPC ∠=BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,BD 与CE 交于F ,则BFC ∠= ( ) .A 085 .B 090 .C 095 .D 0100 4.记222222*********,1223(1)n S n n =++++++++++ 则20162016S =( ) .A20162017 .B 20172016 .C 20172018 .D 20182017 5.点D 、E 、F 分别在ABC ∆的三边BC 、AB 、AC 上,且AD 、BF 、CE 相交于一点M ,若5,AB AC BE CF += 则AM MD = ( ) .A 72 .B 3 .C 52 .D 2 6.设,,,a b c d 都是正整数,且5234,,319,a b c d a c ==-= 则2b c a d -= ( ) 一试分 二试分 总 分 计分人 得分 评卷人 省 市 县 学校 姓名 性别 准考证号 (密封装订线内不要答题).A 15 .B 17 .C 18 .D 20二、填空题(本题满分28分,每小题7分)本题共有4个小题,要求直接将答案写在横线上.1.如图,已知四边形ABCD 的对角互补,且,15BAC DAC AB ∠=∠=,12.AD = 过顶点C 作CE AB ⊥于,E 则AE BE= .2.已知整数,,a b c 满足不等式22222112820,a b c ab b c +++<++则a b c +-= . *3.若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 .*4.将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 .得分 评卷人2016年全国初中数学联合竞赛试题 第二试(3月20日上午9:50 — 11:20) 考生注意:本试共三个大题,第一题20分,第二25分,第三题25分,全卷满分70分. 分 一、(本题满分20分) 如图,ABCD 为平行四边形,E 为BC 的中点,DF AE ⊥于F ,H 为DF 的中点.证明:CH DF ⊥.题 号 一 二 三 合 计 得 分 评卷人 复核人 得分 评卷人 省 市 县 学校 姓名 性别 准考证号 (密封装订线内不要答题)二、(本题满分25分) 设互不相等的非零实数,,a b c 满足:222,a b c b c a+=+=+ 求22222a b c b c a ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 的值.三、(本题满分25分) 已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数 值.。
总分第十八届华罗庚金杯少年邀请赛初赛试题A (初二组)(时间2013年3月23日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
) 1.计算:()1-2127--2-3332+=( ). A .-1B .-1+2C .-3-2D .-7+2解析:原式=3-8-(-3)+(12+)= 1-2,选B 。
2. 如果关于x, y 的方程组 3x+4y=m+n-4的解满足0y x =+, 那么mn 的值等于( ). x-2y= 3m-2n+3 A.0B.1C.2D.3解析:根据根式的意义,可知道x=y=0,可将有关x, y 的方程组转化为m ,n 的方程,解得m=1,n=3,mn 的值等于3,选D 。
3. 如图, 在直角坐标系Oxy 中, A, B 分别是x 轴和y 轴上的点, 四边形OACB 是矩形, 别与AC, BC 交OA=7, OB=4. 已知反比例函数y=xk(k>0)在第一象限的图象分于F, E. 当△ECF 的面积等于732时, k 的值等于( ) A .8B .10C .12D .14解析:根据题意,F, E 在反比例函数y=x k 图象上, E 点坐标(4k ,4),E 点坐标(7,7k ),所以EC=7-4k ,CF=4-7k, S △ECF=732=(7-4k )(4-7k)÷2 化简的k 2-56k+528=0,配方得(k-28)2=256,所以k-28=16,k=12。
答案为C 。
4.如图, 正方形ABCD 中, M, N 是边AB 上的点, E, F 是边CD 上的点, 连接AF, BE, CM,DN 交成四边形PQRS. 若AM = NB = CF = DE = 1, MN = 4. 则四边形PQRS 的面积等于( ).A .53B .54 C .1 D .56 解析:由对称性,易知PS=SR=RQ=QP ,四边形PQRS 是菱形,不是正方形。
第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)一、选择题(每小题10分,共60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.算式的结算中含有( )个数字0. A.2017B.2016C.2015D.2014【答案】C【解析】 201622016201620152015(101)(102)101999...998000 (001)-=-⨯+=个个2.已知A B ,两地相距300米.甲、乙两人同时分别从,A B 两地出发,相向而行,在距A 地140米处相遇;如果乙每秒多行1米,则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米. A.325 B.425 C.3 D.135【答案】D【解析】设甲速1v 乙速2v121214073001408300180211803v v v v ⎧==⎪-⎪⎨-⎪==⎪+⎩解得12145165v v ⎧=⎪⎪⎨⎪=⎪⎩3.在一个七位整数中,任何三个连续排列的数字都构成一个能被11或13整除的三位数,则这个七位数最大是( )A.9981733B.9884737C.9978137D.9871773【答案】B【解析】100111137=⨯⨯,ACD 前三位都不是11或13的倍数 9881376=⨯,8841368=⨯,8471177=⨯,4731143=⨯,7371167=⨯4.将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有( )种不同的排行.A.1152B.864C.576D.288 【答案】A【解析】123...728++++=,8的两边之和都是14有(1247)8(356),(1256)8(347),(1346)8(257),(2345)8(356)四种分法共有244!3!1152⨯⨯⨯=种排法5.在等腰梯形ABCD 中,AB 平行于CD ,AB =6,CD =14, AEC ∠是直角,CE CB =,则AE 2等于( )A.84B.80C.75D.64【答案】A【解析】AG BF h ==,10CG =,4CF =2222100AC AG CG h =+=+2222216CE BC BF CF h ==+=+22284AE AC CE =-=6.从自然数1,2,3,…,2015,2016中,任意取n 个不同的数,要求总能在这n 个不同的数中找到5个数,它们的数字和相等.那么n 的最小值等于( )A.109B.110C.111D.112【答案】B【解析】1到2016中,数字和最大28。
总分第二十一届华罗庚金杯少年数学邀请赛初赛试卷 B(小学中年级组)(时间: 2015 年 12 月 12 日 15:00~16:00)一、选择题(每小题 10 分, 共 60 分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内. )1.“凑24点”游戏规则是:从一副扑克牌中抽去大小王剩下52张,(如果初练也可只用 1~10 这 40 张牌)任意抽取 4 张牌(称牌组), 用加、减、乘、除(可加括号)把牌面上的数算成 24. 每张牌必须用一次且只能用一次, 并不能用几张牌组成一个多位数 ,如抽出的牌是3, 8, 8, 9,那么算式为(9 - 8) ⨯8 ⨯ 3 或(9 -8 ÷8) ⨯3 等. 在下面 4 个选项中, 唯一无法凑出 24 点的是().(A)1, 2, 3, 3(B)1, 5, 5, 5(C)2, 2, 2, 2(D)3, 3, 3, 32.在右图的乘法算式中, 每个汉字代表 0 至 9 中的一个数字, 不同汉字代表不同数字, 当算式成立时, “好”字代表的数字是().(A)1(B)2(C)4(D)63.如右图, 边长分别为 10 厘米和 7 厘米的正方形部分重叠, 重叠部分的面积是 9 平方厘米. 图中两个阴影部分的面积相差()平方厘米.(A)51(B)60(C)42(D)94.库里是美国 NBA 勇士队当家球星, 在过去的 10 场比赛中已经得了 333 分的高分,他在第 11 场得()分就能使前11场的平均得分达到34分.(A)35(B)40(C)41(D)47咨询电话 4006500666 5. 如右图, 木板上有 10 根钉子, 任意相邻的两根钉子距离都相等. 以这些钉子为顶点, 用橡皮筋可套出()个正三角形. (A )6 (B )10(C )13(D )156. 在桌面上, 将一个边长为 1 的正六边形纸片与一个边长为 1 的正三角形纸片拼接, 要求无重叠, 且拼接的边完全重合, 则得到的新图形的边数为().(A )8(B )7(C )6(D )5二、填空题(每小题 10 分, 共 40 分)7. 计算:1987 ⨯ 2015 -1986 ⨯ 2016 =.8. 学校打算组织同学们去秋游. 每辆大巴车有 39 个座位, 每辆公交车有 27 个座位, 大巴车比公交车少 2 辆. 如果所有学生和老师都乘坐大巴, 每辆大巴车上有 2 位老师, 则多出 3 个座位; 如果都乘坐公交车, 每辆公交车都坐满并且各有 1 位老师, 则多出 3 位老师. 那么共有 位老师, 名同学参加这次秋游.9. 于 2015 年 10 月 29 日闭幕的党的十八届五中全会确定了允许普遍二孩的政策.笑笑的爸爸看到当天的新闻后跟笑笑说: 我们家今年的年龄总和是你年龄的 7 倍, 如果明年给你添一个弟弟或者妹妹, 我们家 2020 年的年龄总和就是你那时年龄的 6 倍. 那么笑笑今年 岁.10. 教育部于 2015 年 9 月 21 日公布了全国青少年校园足球特色学校名单, 笑笑所在的学校榜上有名. 为了更好地备战明年市里举行的小学生足球联赛, 近期他们学校的球队将和另 3 支球队进行一次足球友谊赛. 比赛采用单循环制(即每两队比赛一场), 规定胜一场得 3 分, 负一场得 0 分, 平局两队各得 1 分; 以总得分高低确定名次, 若两支球队得分相同, 就参考净胜球、相互胜负关系等因素决定名次. 笑笑学校的球队要想稳获这次友谊赛的前两名, 至少 要得分.。
2016年全国初中数学联合竞赛(四川初二初赛)试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.选择题和填空题只设7分和0分两档;解答题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、A2、B3、D4、C5、A6、D二、填空题(本题满分28分,每小题7分)7、1275 8、1 9、6 10、13三、解答题(本题共三小题,第11题20分,第12、13题各25分,共70分)11、若关于x 的方程01)32()23(=-++++x n x m x 有无数多个解,求n m ,的值.解:原方程整理得:0132)123(=-++++n m x n m , ………………5分由题意有:⎩⎨⎧=-+=++01320123n m n m ,………………………………………15分 解得⎩⎨⎧=-=11n m . ………………………………………………………20分12、已知实数a 、b 、c ,满足0≠abc 且0))((4)(2=----b a c b c a ,求b c a +的值. 解:因为222)())((2)()]()[(b a b a b c b c b a b c -+--+-=-+- (1)……5分222)())((2)()]()[(b a b a b c b c b a b c -+----=---(2)…………10分(1)-(2)得))((4)]()[()]()[(22b a b c b a b c b a b c --=-----+- 即:))((4)()2(22b a c b a c b c a ---=---+故0)2())((4)(22=-+=----b c a b a c b a c , …………………20分即02=-+b c a ,故2=+bc a . …………………………………………25分 13、已知如图,在△ABC 中,C B ∠=∠2,且BD AB AC +=,求证:AD 是BAC ∠的平分线.证明1:延长AB 至G ,使BD BG =,则AC BD AB BG AB AG =+=+=, 所以ACG AGC ∠=∠; ………………………………5分又BDG BGD ∠=∠,所以ACB ABC AGD ∠=∠=∠21, 故DCG ACB ACG BGD AGC CGD ∠=∠-∠=∠-∠=∠;所以DC DG =; …………………15分又AD 是公共边,所以△AGD ≌△ACD , …………………20分 所以CAD GAD ∠=∠,即AD 是BAC ∠的平分线.…………………25分证明2:作ABC ∠的平分线交AC 于E ,过D 作BE 的平行线交AC 于F ,交AB 的延长线于G ,则: 因为C ABC ∠=∠2,DF 平行BE ,所以FDC C EBC ∠=∠=∠,所以FD FC =,且ABC FDC C AFD ∠=∠+∠=∠…………5分 又BDG FDC C ABC ABE AGD ∠=∠=∠=∠=∠=∠21, 所以BG BD =,所以AC BD AB BG AB AG =+=+=, …………10分又ABC AFG C G ∠=∠∠=∠,,所以△AFG ≌△ABC , …………………15分所以AB AF =,DB FC DF ==, …………………20分所以△ABD ≌△AFD ,故FAD BAD ∠=∠,即AD 是BAC ∠的平分线.……25分。
第二十二届华罗庚金杯少年数学邀请赛初赛试卷(初二组) 第二十二届华罗庚金杯少年数学邀请赛 初赛试卷(初二组) (时间: 2016年12月10日10:00—11:00) 一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.) 1. 已知,,a b c 是ABC ∆的三边的长,则算式||a b c --的值等于(). (A )a b c ++(B )2b a c ++(C )3b a c ++(D )3b a c +- 2. 已知实数a ,b 满足221a b +=和220ab a b -+-≥,. (A)2B)1(C)2+D3. 如下图所示, AB AC =, AP BQ =, AO BO CO ==, 16AQO ︒∠=, 则CPO ∠等于()度. (A )16 (B )32 (C )45 (D )464. 两个同心圆的大圆周上有4个不同的点, 小圆周上有2个不同的点, 过每两个点画一条直线,那么过这些点可以画出的直线最少有()条.(A )4(B )6 (C )8(D )12A O CB P Q 装订线第二十二届华罗庚金杯少年数学邀请赛初赛试卷(初二组)5. 小强开车从北京去天津, 前半段路程的平均车速为120千米/小时, 后半段路程的平均车速为80千米/小时. 原路返回北京时, 他前半段路程的平均车速为84千米/ 小时, 那么他后半段路程的平均速度至少要达到()千米/小时才能保证返程所用时间不多于去程.(A )104(B )108 (C )110 (D )1126. 已知四边形ABCD 中,对角线BD 被AC 平分,那么再加上下述中的条件() 可以得到结论: “四边形ABCD 是平行四边形”.(A )AB CD =(B )BAD BCD ∠=∠(C )ABC ADC ∠=∠(D )AC BD =二、填空题(每小题 10 分, 共40分)7. 右图是5个边长为1的正方形组成的 “L形”图. 过格点T 的直线交AB 于点E ,交BC 于点F . 如果三角形BFE 的面积为“L 形”图的面积的一半,则EF 的长度等于. 8. 围着一张圆桌给3名男生, 6名女生安排座位, 座位没有编号. 如果两名男生之间恰有两名女生, 共有种安排座位的方法.9. 如果两种化工产品接触会发生爆炸, 那么这两种化工产品就需用不同的储藏室来存放.否则, 这两种化工产品可以放在一个储藏室. 右图中的20个点表示20种不同的化工产品,两点之间用一条边连接表示两种化工产品接触会发生爆炸.为了保证这20种化工产品的安全, 至少要用个储藏室.10. 自然数,,a b c 满足1a b c >>>,2ac b =, 且111a b c ++=, 则满足条件的数组(,,)a b c 有个.。