海南省文昌中学高中数学《第一章 常用逻辑用语》单元测试题 新人教A版选修11,21
- 格式:doc
- 大小:118.51 KB
- 文档页数:2
【名师一号】2014-2015学年高中数学 第一章 常用逻辑用语单元同步测试(含解析)新人教A 版选修1-1(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.“a >0”是“|a |>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析 本题考查充要条件的判断,∵a >0⇒|a |>0,|a |>0D ⇒/a >0,∴“a >0”是“|a |>0”的充分不必要条件.答案 A2.命题“∀x ∈R ,x 2-2x +4≤0”的否定为( ) A .∀x ∈R ,x 2-2x +4≥0 B .∀x ∉R ,x 2-2x +4≤0 C .∃x ∈R ,x 2-2x +4>0 D .∃x ∉R ,x 2-2x +4>0答案 C3.“x =2k π+π4(k ∈Z )”是“tan x =1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 tan(2k π+π4)=tan π4=1,所以充分;但反之不成立,如tan 5π4=1.答案 A4.下列命题中的假命题是( ) A .∀x ∈R,2x -1>0 B .∀x ∈N *,(x -1)2>0 C .∃x ∈R ,lg x <1D .∃x ∈R ,tan x =2解析 对于B 选项x =1时,(x -1)2=0,故选B. 答案 B5.如果命题“綈p ”为真,命题“p ∧q ”为假,那么( ) A .q 为假 B .q 为真C .p 或q 为真D .p 或q 不一定为真解析 ∵命题“綈p ”为真,∴命题“p ”为假,又“p ∧q ”为假,∴q 可真也可以假.∴p 或q 可真也可以假,故应选D. 答案 D6.下列说法正确的是( )①原命题为真,它的否命题为假; ②原命题为真,它的逆命题不一定为真; ③一个命题的逆命题为真,它的否命题一定为真; ④一个命题的逆否命题为真,它的否命题一定为真. A .①② B .②③ C .③④ D .②③④答案 B7.设{a n }是首项大于零的等比数列,则“a 1<a 2”是“数列{a n }是递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 答案 C8.下列命题中的假命题是( ) A. ∀x >0且x ≠1,都有x +1x>2B. ∀a ∈R ,直线ax +y =a 恒过定点(1,0)C. ∀φ∈R ,函数y =sin(x +φ)都不是偶函数D .∃m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减 解析 A .当x >0时,x +1x≥2x ·1x=2,∵x ≠1,∴x +1x>2,故A 为真命题.B .将(1,0)代入直线ax +y =a 成立,B 为真命题.C .当φ=π2时,函数y =sin(x +π2)是偶函数,C 为假命题.D .当m =2时,f (x )=x -1是幂函数,且在(0,+∞)上单调递减,∴D 为真命题,故选C.答案 C9.下列选项中,p 是q 的必要不充分条件是( ) A .p :a +c >b +d ,q :a >b ,且c >dB .p :a >1,b >1,q :f (x )=a x-b (a >0,且a ≠1)的图象不过第二象限 C. p :x =1,q :x 2=xD .p :a >1,q :f (x )=log a x (a >0,且a ≠1)在(0,+∞)上为增函数 答案 A10.以下判断正确的是( )A .命题“负数的平方是正数”不是全称命题B .命题“∀x ∈N ,x 3>x ”的否定是“∃x 0∈N ,x 30>x 0”C .“a =1”是“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”的必要不充分条件 D .“b =0”是“函数f (x )=ax 2+bx +c 是偶函数”的充要条件解析 ∵“负数的平方是正数”即∀x <0,则x 2>0,是全称命题,∴A 不正确;∵对全称命题“∀x ∈N ,x 3>x ”的否定是“∃x 0∈N ,x 30≤x 0”,∴B 不正确;∵f (x )=cos 2ax -sin 2ax =cos2ax ,当最小正周期为π时,有2π|2a |=π.∴|a |=1D ⇒a =1,∴a =1是“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”的充分不必要条件,故C 不正确;D 正确.答案 D11.下列四个命题中,其中真命题是( ) ①“若xy =1,则lg x +lg y =0”的逆命题; ②“若a ·b =a ·c ,则a ⊥(b -c )”的否命题;③“若b ≤0,则方程x 2-2bx +b 2+b =0有实根”的逆否命题; ④“等边三角形的三个内角均为60°”的逆命题. A .①② B .①②③④ C .②③④D .①③④解析 ①逆命题:“若lg x +lg y =0,则xy =1”为真命题.②逆命题:“若a ⊥(b -c ),则a ·b =a ·c ”为真命题,根据逆命题与否命题的等价性,则否命题也为真命题.③当b ≤0时,Δ=4b 2-4(b 2+b )=-4b ≥0,知方程有实根,故原命题为真命题,所以逆否命题也为真命题.④真命题. 答案 B12.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧q ”是真命题,则实数a 的取值范围是( )A .a ≤-2或a =1B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤1解析 ∀x ∈[1,2],x 2-a ≥0,即a ≤x 2, 当x ∈[1,2]时恒成立,∴a ≤1. ∃x 0∈R ,x 20+2ax 0+2-a =0,即方程x 2+2ax +2-a =0有实根,∴Δ=4a 2-4(2-a )≥0,∴a ≤-2,或a ≥1.又p ∧q 为真,故p ,q 都为真,∴⎩⎪⎨⎪⎧a ≤1,a ≤-2,或a ≥1.∴a ≤-2,或a =1. 答案 A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.写出命题:“若方程ax 2-bx +c =0的两根均大于0,则ac >0”的一个等价命题是________.解析 一个命题与其逆否命题等价,因此只要写出原命题的逆否命题即可. 答案 若ac ≤0,则方程ax 2-bx +c =0的两根不都大于014.已知p :x 2-x ≥2,q :|x -2|≤1,且p ∧q 与綈q 同时为假命题,则实数x 的取值范围为________.解析 由x 2-x ≥2,得x ≥2,或x ≤-1, |x -2|≤1,得1≤x ≤3, ∵p ∧q 与綈q 同时为假命题, ∴q 为真命题,p 为假命题,∴1≤x <2. 答案 1≤x <215.已知直线l 1:2x -my +1=0与l 2:x +(m -1)y -1=0,则“m =2”是l 1⊥l 2的________条件.解析 若l 1⊥l 2,只需2×1+(-m )(m -1)=0, 即m 2-m -2=0,即m =2,或m =-1, ∴m =2是l 1⊥l 2的充分不必要条件. 答案 充分不必要 16.下列四种说法:①命题“∀x ∈R ,都有x 2-2<3x ”的否定是“∃x ∈R ,使得x 2-2≥3x ”; ②若a ,b ∈R ,则2a <2b是log 12a >log 12b 的必要不充分条件;③把函数y =sin(-3x )(x ∈R )的图象上所有的点向右平移π4个单位即可得到函数y =sin(-3x -π4)(x ∈R )的图象;④若向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为2π3,则|a +b |= 3.其中正确的说法是________. 解析 ①正确.②若2a <2b,则a <b ,当a 或b 为负数时,log 12a >log 12b 不成立,若log 12a >log 12b ,∴0<a <b ,∴2a<2b.故②正确.③把y =sin(-3x )的图象上所有点向右平移π4,得到y =sin[-3(x -π4)]=sin(-3x+3π4),故③不正确. ④由题可知,a ·b =1×2cos 2π3=-1,∴|a +b |2=a 2+2a ·b +b 2=3,∴|a +b |=3,故④正确.答案 ①②④三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)判断下列命题是全称命题还是特称命题,并判断其真假. (1)平面内,凸多边形的外角和等于360°; (2)有一些奇函数的图象过原点; (3)∃x 0∈R,2x 20+x 0+1<0; (4)∀x ∈R ,sin x +cos x ≤ 2.解 (1)可以改写为“平面内,所有凸多边形的外角和等于360°”,故是全称命题,且为真命题.(2)“有一些”是存在量词,故该命题为特称命题,显然是真命题. (3)是特称命题.∵2x 20+x 0+1=2(x 0+14)2+78>0,∴不存在x 0∈R ,使2x 20+x 0+1<0,故该命题为假命题.(4)是全称命题.∵sin x +cos x =2sin(x +π4)≤2恒成立,∴对任意的实数x ,sin x+cos x ≤2都成立,故该命题是真命题.18.(12分)写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题,并判断其真假.解 逆命题为:“已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集”.由a 2≥4b 知,Δ=a 2-4b ≥0.这说明抛物线y =x 2+ax +b 与x 轴有交点,那么x 2+ax +b ≤0必有非空解集.故逆命题是真命题.19.(12分)设集合M ={x |y =log 2(x -2)},P ={x |y =3-x },则“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的什么条件?解 由题设知,M ={x |x >2},P ={x |x ≤3}. ∴M ∩P =(2,3],M ∪P =R 当x ∈M ,或x ∈P 时x ∈(M ∪P )=RD ⇒/x ∈(2,3]=M ∩P .而x ∈(M ∩P )⇒x ∈R∴x ∈(M ∩P )⇒x ∈M ,或x ∈P .故“x ∈M ,或x ∈P ”是“x ∈(M ∩P )”的必要不充分条件. 20.(12分)写出下列各命题的否定形式并分别判断它们的真假. (1)面积相等的三角形是全等三角形; (2)有些质数是奇数; (3)所有的方程都不是不等式; (4)自然数的平方是正数. 解 原命题的否定形式:(1)面积相等的三角形不一定是全等三角形,为真命题. (2)所有质数都不是奇数,为假命题. (3)至少存在一个方程是不等式,为假命题. (4)自然数的平方不都是正数,为真命题.21.(12分)已知a >0,a ≠1,设p :函数y =log a (x +3)在(0,+∞)上单调递减,q :函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点.如果p ∨q 真,p ∧q 假,求实数a 的取值范围.解 对于命题p :当0<a <1时,函数y =log a (x +3)在(0,+∞)上单调递减. 当a >1时,函数y =log a (x +3)在(0,+∞)上单调递增,所以如果p 为真命题,那么0<a <1.如果p 为假命题,那么a >1.对于命题q :如果函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点, 那么Δ=(2a -3)2-4>0, 即4a 2-12a +5>0⇔a <12,或a >52.又∵a >0,所以如果q 为真命题, 那么0<a <12或a >52.如果q 为假命题,那么12≤a <1,或1<a ≤52.∵p ∨q 为真,p ∧q 为假,∴p 与q 一真一假. 如果p 真q 假,那么⎩⎪⎨⎪⎧0<a <1,12≤a <1,或1<a ≤52,⇔12≤a <1.如果p 假q 真,那么⎩⎪⎨⎪⎧a >1,0<a <12,或a >52,⇔a >52.∴a 的取值范围是[12,1)∪(52,+∞).22.(12分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0.命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)当a =1,且p ∧q 为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围. 解 (1)由x 2-4ax +3a 2<0,得a <x <3a (a >0). 当a =1时,1<x <3,所以p :1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,解得2<x ≤3,所以q :2<x ≤3.若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是{x |2<x <3}.(2)设A ={x |x 2-4ax +3a 2<0,a >0}={x |a <x <3a ,a >0},B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x 2-x -6<0,x 2+2x -8>0={x |2<x ≤3}.根据题意可得B A ,则0<a ≤2且3a >3,即1<a ≤2. 故实数a 的取值范围是{a |1<a ≤2}.。
优质教案 推荐下载第一章检测 (B)(时间 :90 分钟满分 :120 分)一、选择题 (本大题共 10 小题 ,每小题 5 分,共 50 分 .在每小题给出的四个选项中 ,只有一项是符合题目要求的 )1.命题 ?x 0∈?R Q∈ Q 的否定是 ()A. ?x 0?? R Q∈ Q B. ?x 0∈ ?R Q ? QC.? x?? R Q ,x 3∈ Q D. ?x ∈ ?R Q ,x 3? Q 答案 :D2.已知命题 p:?x 0∈ (-∞,0) 命题 ? x ∈ (0,1),log 2x< 0,则下列命题为真命题的是 () A. p ∧ q B. p ∨( q) C.( p)∧ q D. p ∧ (q)答案 :C3.设 a,b 为正实数 ,则 “a>b> 1”是“ log 2a> log 2b> 0”的 ( )A. 充要条件B. 充分不必要条件C.必要不充分条件D. 既不充分也不必要条件解析 :因为函数 y= log 2x 在 (0,+∞)上是增函数 .故 a>b> 1? log 2a> log 2b> log 21= 0.且 log 2a> log 2b> 0? a>b> 1.故 a>b> 1 是 log 2a> log 2b> 0 的充要条件 .答案 :A4.一元二次方程 ax 2+ 4x+3= 0(a ≠ 0)有一个正根和一个负根的充分不必要条件是() A. a< 0B. a> 0C.a<- 1D. a> 1解析 :一元二次方程 ax 2+4x+ 3= 0(a ≠ 0)有一个正根和一个负根 ? 解得 a< 0,故 a<- 1 是它的一个充分不必要条件 . 答案 :C5.已知 “x>k ”是 的充分不必要条件 则 的取值范围是A.[2, +∞)B.[1, +∞)C.(2,+∞)D.( -∞,-1]解析 :由 可得-的充分不必要条件 ,所以 x<- 1 或 x> 2.因为 “x>k ”是所以 k ≥2.答案 :A6.设原命题:若a+b≥2,则a,b中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A. 原命题真 ,逆命题假B. 原命题假 ,逆命题真C.原命题真 ,逆命题真D. 原命题假 ,逆命题假解析 :原命题的逆否命题:若 a,b 都小于 1,则 a+b< 2,是真命题 ,所以原命题为真命题 ; 原命题的逆命题 : 若 a,b 中至少有一个不小于1,则 a+b ≥2,如 a= 3,b=- 3 满足条件 a,b 中至少有一个不小于1,但此时a+b= 0,故逆命题为假命题 .答案 :A7.f(x),g(x)是定义在 R 上的函数,h( x)=f (x)+g (x), f(x),g(x)“均为偶函数”是“h(x)为偶函数”的 ( )A. 充要条件B. 充分不必要条件C.必要不充分条件D. 既不充分也不必要条件解析 :若 f(x),g(x)均为偶函数,则 h(-x)=f (-x) +g (-x)=f (x)+g (x)=h (x),所以 h(x)为偶函数 ;若 h(x)为偶函数 ,则 f(x),g(x)不一定均为偶函数.可举反例说明 ,如 f(x)=x ,g(x)=x 2-x+ 2,则 h(x)=f (x)+g (x)=x 2+ 2 为偶函数 .答案 :B8.下列命题中是假命题的是()A. ?m0∈R ,f(x)= (m0-1 - 是幂函数且在上单调递减B.? x∈ (0,+∞),sin x<xC.? α0,β0∈R,cos(α0+ β0) =cos α0+ sin β0D.? φ∈R ,函数 f(x)= sin(2x+ φ)都不是偶函数解析 :对于选项 A, 当 m0 =2 时 ,满足 f(x)= (m0-1 - 是幂函数 ,即 f(x) 则 f( x)在 (0,+∞)上单调递减,故选项 A 为真命题 ;对于选项 B, 由三角函数线知当 x∈ , 时 ,sin x<x ;当 x∈ , 时 ,sinx≤1故选项 B 为真命题 ; 对于选项 C,当β0= 0 时 ,cos(α0+ β0)= cos α0+sin β0成立 ,所以选项 C 为真命题 ;对于选项 D,当φ时 ,f(x)= cos 2x 为偶函数 ,所以选项 D 为假命题 ,故选 D.答案 :D9.已知平面α,命题甲:若a∥ α,b∥ α,则a∥b,命题乙:若a⊥ α,b⊥ α,则a∥b,则下列说法正确的是()A. 当 a,b 均为直线时 ,命题甲、乙都是真命题B.当 a,b 均为平面时 ,命题甲、乙都是真命题C.当 a 为直线 ,b 为平面时 ,命题甲、乙都是真命题D.当 a 为平面 ,b 为直线时 ,命题甲、乙都是假命题解析 :对于选项 A, 当 a,b 均为直线时 ,命题甲是假命题、乙是真命题,故不正确 ;对于选项 B,当 a,b 均为平面时 ,命题甲是真命题、乙是假命题,故不正确 ;对于选项 C,当 a 为直线 ,b 为平面时 ,命题甲、乙都是假命题 ,故不正确 ;对于选项D,当 a 为平面 ,b 为直线时 ,命题甲、乙都是假命题,正确 .答案 :D10.有下列命题 :① “若 x+y> 0,则 x>0,且 y> 0”的否命题 ; ② “矩形的对角线相等 ”的否命题 ;③ “若 m ≥ 1,则 mx 2-2(m+ 1)x+m+ 3> 0 的解集是 R ”的逆命题 ;④ “若 a+ 7 是无理数 ,则 a 是无理数 ”的逆否命题 .其中真命题是()A. ①②③B. ②③④C.①③④D. ①④解析 :① 的逆命题为 “若 x> 0,且 y> 0,则 x+y> 0”为真 ,故否命题为真;② 的否命题为 “不是矩形的图形对角线不相等”,为假 ;③ 的逆命题为 “若 mx 2-2(m+ 1)x+m+ 3> 0 的解集为 R ,则 m ≥ 1.”∵当 m= 0 时 ,解集不是 R ,∴ 应有, 即 m> 1.∴③ 是真命题 ;,④ 原命题为真 ,逆否命题也为真 .答案 :C二、填空题 (本大题共 5 小题 ,每小题 5 分,共 25 分.把答案填在题中的横线上 )11.命题 “若 a>b ,则 2a >2b- 1”的否命题为 .a b答案 :若 a ≤b,则 2 ≤2-112.命题 p:若 a,b ∈ R ,则 “ab= 0”是“a= 0”的充分条件 ;命题 q: 函数 y - 的定义域是 则 ∨q ”“p ∧ q ”“ p ”中是真命题的为.解析 :p 为假命题 ,q 为真命题 ,故 p ∨ q 为真命题 ,p 为真命题 .答案 :p ∨ q, p13.已知 p(x):x 2+ 2x-m> 0,若 p(1)为假 ,p(2)为真 ,则实数 m 的取值范围为.解析 :因为 p(1) 为假 ,所以 1+ 2-m ≤0,解得 m ≥3;又 p(2) 为真 ,所以 4+ 4-m> 0,解得 m< 8.故实数 m 的取值范围是 [3,8) .答案 :[3,8)14.已知 p:-4<x-a< 4,q:(x-2)(3-x)> 0,若 p 是 q 的充分条件 ,则实数 a 的取值范围是.解析 :p:a-4<x<a+ 4,q:2<x< 3.由 p 是 q 的充分条件 ,可知 q 是 p 的充分条件 ,即 q? p,-, 解得 - 1≤a ≤6.,答案 :[-1,6]15.给出以下四个命题 :①若 ab≤0,则 a≤0或 b≤0;2 2③在△ABC 中 ,若 sin A= sin B,则 A=B ;2 2④在一元二次方程 ax +bx+c= 0 中 ,若 b -4ac< 0,则方程有实数根 .其中原命题、逆命题、否命题、逆否命题均为真命题的是.(填序号 )解析 :对命题① ,其原命题和逆否命题为真,但逆命题和否命题为假;对命题② ,其原命题和逆否命题为假,但逆命题和否命题为真 ;对命题③,其原命题、逆命题、否命题、逆否命题全部为真;对命题④ ,其原命题、逆命题、否命题、逆否命题全部为假.答案 :③三、解答题 (本大题共 5 小题 ,共 45 分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)写出命题“若-则且的逆命题、否命题、逆否命题并判断它们的真假解 :逆命题 : 若 x=2,且 y=- 1,则-真命题.否命题 :若 - ≠ 0,则 x≠2或 y≠-1,真命题 .逆否命题 : 若 x≠2或 y≠-1,则-≠ 0,真命题.17.(8分)设p:关于x的不等式如果 p 和 q 有且仅有一个为真解 :当 p 真时 ,0<a< 1.x 2a > 1(a> 0,且 a≠ 1)的解集为 { x|x< 0}; q:函数 y= lg(ax -x+a )的定义域为R.当 q 真时,即 a - ,∴p 假时 ,a> 1,q 假时 ,a≤又 p 和 q 有且仅有一个为真,∴当 p 真 q 假时 ,0<a ≤当 p 假 q 真时 ,a> 1. 综上 ,得 a∈,∪ (1,+∞).18.(9 分) 已知 m ∈ R ,设 p:x 1 和 x 2 是方程 x 2-ax-2= 0 的两个根 ,不等式 |m-5|≤|x 1-x 2|对任意实数 a ∈ [1,2] 恒成立 ;q:函数 f(x)= 3x 2+ 2mx+m 有两个不同的零点 求使 且 为真命题的实数 的取值范围解 :由题设 ,得 x 1+x 2=a ,x 1x 2=- 2,∴ |x 1-x 2| ) -当 a ∈ [1,2] 时的最小值为 3.要使 |m-5|≤|x 1-x 2| 对任意实数 a ∈[1,2] 恒成立 ,只需 |m-5|≤ 3,即 2≤m ≤8.2的判别式 Δ=4m 2解得 m<- 1由已知 ,得 3x + 2mx+m-1或 m>4.综上 ,要使 “p 且 q ”为真命题 ,只需 p 和 q 都是真命题 ,即,解得实数 m 的取值范 , - 或围是 (4,8] .19.(10 分 )已知 a> 1,命题 p:a(x-2)+ 2> 0,命题 q:(x-1) 2>a (x-2)+1.若 p 或q 为真 , q 为假 ,求实数 x 的取值范围 .解 :命题 p:a(x-2)+ 2> 0,即 x-2>解得 x> 22命题q:x -(2+a )x+ 2a> 0,即 (x-2)(x-a)> 0.若 p 或 q 为真 , q 为假 ,则 p 真 ,q 真.① 若 1<a< 2,则 q:x<a 或 x>2.若命题 p,q 同时成立 ,则 2或x> 2.即 x 的取值范围是- ,∪ (2,+∞).② 若 a= 2,则 p:x>1,q:x ≠2.若命题 p,q 同时成立 ,则 x> 1,且 x ≠2.即 x 的取值范围是 (1,2)∪ (2,+∞).③ 若 a> 2,则 q:x<2 或 x>a.若命题 p,q 同时成立 ,则 2或x>a.即 x 的取值范围是- ,∪ (a,+∞).20.(10分)已知c> 0,设命题p:y=c x为减函数,命题q:函数f(x)=x在,上恒成立若∨q 为真命题 ,p∧ q 为假命题 ,求 c 的取值范围 .解 :由 p∨ q 为真 ,p∧ q 为假 ,知 p 与 q 为一真一假 ,对 p,q 进行分类讨论即可.若p 真 ,由 y=c x为减函数 ,得 0<c< 1.当 x∈,时,由不等式x≥ 2x= 1时取等号)知,f(x)=x在,上的最小值为2,若q 真,则即c若p 真 q 假,则 0<c< 1,c≤所以 0<c ≤若 p 假 q 真,则 c≥1,c所以c≥1.综上可得 ,c∈,∪ [1,+∞).7。
1.1.3四种命题间的相互关系课时目标1.认识四种命题之间的关系以及真假性之间的关系.2.会利用命题的等价性解决问题.1.四种命题的相互关系2.四种命题的真假性(1)四种命题的真假性,有且仅有下面四种情况:(2)①两个命题互为逆否命题,它们有______的真假性.②两个命题为互逆命题或互否命题,它们的真假性______________.一、选择题1.命题“若p不正确,则q不正确”的逆命题的等价命题是()A.若q不正确,则p不正确B.若q不正确,则p正确C.若p正确,则q不正确D.若p正确,则q正确2.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真3.与命题“能被6整除的整数,一定能被2整除”等价的命题是()A.能被2整除的整数,一定能被6整除B.不能被6整除的整数,一定不能被2整除C.不能被6整除的整数,不一定能被2整除D.不能被2整除的整数,一定不能被6整除4.命题:“若a2+b2=0 (a,b∈R),则a=b=0”的逆否命题是()A.若a≠b≠0 (a,b∈R),则a2+b2≠0B.若a=b≠0 (a,b∈R),则a2+b2≠0C.若a≠0,且b≠0 (a,b∈R),则a2+b2≠0D.若a≠0,或b≠0 (a,b∈R),则a2+b2≠05.在命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真6.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题7.“已知a ∈U (U 为全集),若a ∉∁U A ,则a ∈A ”的逆命题是______________________________________,它是______(填“真”“或”“假”)命题.8.“若x ≠1,则x 2-1≠0”的逆否命题为________命题.(填“真”或“假”)9.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b, 则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题.其中是假命题的是________.三、解答题10.已知命题:若m >2,则方程x 2+2x +3m =0无实根,写出该命题的逆命题、否命题和逆否命题,并判断真假.11.已知奇函数f (x )是定义域为R 的增函数,a ,b ∈R ,若f (a )+f (b )≥0,求证:a +b ≥0.能力提升12.给出下列三个命题:①若a ≥b >-1,则a 1+a ≥b 1+b; ②若正整数m 和n 满足m ≤n ,则m (n -m )≤n 2; ③设P (x 1,y 1)是圆O 1:x 2+y 2=9上的任意一点,圆O 2以Q (a ,b )为圆心,且半径为1.当(a -x 1)2+(b -y 1)2=1时,圆O 1与圆O 2相切.其中假命题的个数为( )A .0B .1C .2D .313.a 、b 、c 为三个人,命题A :“如果b 的年龄不是最大的,那么a 的年龄最小”和命题B :“如果c 的年龄不是最小的,那么a 的年龄最大”都是真命题,则a 、b 、c 的年龄的大小顺序是否能确定?请说明理由.1.互为逆否的命题同真假,即原命题与逆否命题,逆命题与否命题同真假.四种命题中真命题的个数只能是偶数个,即0个、2个或4个.2.当一个命题是否定形式的命题,且不易判断其真假时,可以通过判断与之等价的逆否命题的真假来达到判断该命题真假的目的.1.1.3 四种命题间的相互关系 答案知识梳理1.若q ,则p 若綈p ,则綈q 若綈q ,则綈p2.(2)①相同 ②没有关系作业设计1.D [原命题的逆命题和否命题互为逆否命题,只需写出原命题的否命题即可.]2.D 3.D4.D [a =b =0的否定为a ,b 至少有一个不为0.]5.D [原命题是真命题,所以逆否命题也为真命题.]6.D7.已知a ∈U (U 为全集),若a ∈A ,则a ∉∁U A 真解析 “已知a ∈U (U 为全集)”是大前提,条件是“a ∉∁U A ”,结论是“a ∈A ”,所以原命题的逆命题为“已知a ∈U (U 为全集),若a ∈A ,则a ∉∁U A ”.它为真命题.8.假 9.①②10.解 逆命题:若方程x 2+2x +3m =0无实根,则m >2,假命题.否命题:若m ≤2,则方程x 2+2x +3m =0有实根,假命题.逆否命题:若方程x 2+2x +3m =0有实根,则m ≤2,真命题.11.证明 假设a +b <0,即a <-b ,∵f (x )在R 上是增函数,∴f (a )<f (-b ).又f (x )为奇函数,∴f (-b )=-f (b ),∴f (a )<-f (b ),即f (a )+f (b )<0.即原命题的逆否命题为真,故原命题为真.∴a +b ≥0.12.B [①用“分部分式”判断,具体:a 1+a ≥b 1+b ⇔1-11+a ≥1-11+b ⇔11+a ≤11+b,又a ≥b >-1⇔a +1≥b +1>0知本命题为真命题.②用基本不等式:2xy ≤x 2+y 2 (x >0,y >0),取x =m ,y =n -m ,知本命题为真. ③圆O 1上存在两个点A 、B 满足弦AB =1,所以P 、O 2可能都在圆O 1上,当O 2在圆O 1上时,圆O 1与圆O 2相交.故本命题为假命题.]13.解 能确定.理由如下:显然命题A 和B 的原命题的结论是矛盾的,因此应该从它的逆否命题来考虑.①由命题A 为真可知,当b 不是最大时,则a 是最小的,即若c 最大,则a 最小,所以c >b >a ;而它的逆否命题也为真,即“a 不是最小,则b 是最大”为真,所以b >a >c .总之由命题A 为真可知:c >b >a 或b >a >c .②同理由命题B 为真可知a >c >b 或b >a >c .从而可知,b>a>c.所以三个人年龄的大小顺序为b最大,a次之,c最小.。
第一章《集合与常用逻辑用语》单元练习题(共22题)一、选择题(共10题)1.若命题p:∃x0∈Z,e x0<1,则¬p为( )A.∀x∈Z,e x<1B.∀x∈Z,e x≥1C.∀x∉Z,e x<1D.∀x∉Z,e x≥12.命题:“∀x∈(−∞,0),3x≥4x”的否定为( )A.∃x0∈[0,+∞),3x0<4x0B.∃x0∈[0,+∞),3x0≤4x0C.∃x0∈(−∞,0),3x0<4x0D.∃x0∈(−∞,0),3x0≤4x03.对于集合A,B,“A⊆B不成立”的含义是( )A.B是A的子集B.A中的元素都不是B中的元素C.A中至少有一个元素不属于B D.B中至少有一个元素不属于A4.设U∈R,A={−2,−1,0,1,2},B={x∣ x≥1},则A∩∁U B=( )A.{1,2}B.{−1,0,1}C.{−2,−1,0}D.{−2,−1,0,1}5.已知集合A={x∣ x2>1},集合B={x∣ x(x−2)<0},则A∩B=( )A.{x∣ 1<x<2}B.{x∣ x>2}C.{x∣ 0<x<2}D.{x∣ x≤1,或x≥2}6.已知集合A={x∣ x≤4},B={x∣ x2>4},则A∩B=( )A.{x∣ −2<x<2}B.{x∣ x<−2或x>2}C.{x∣ x<−2或2<x≤4}D.{x∣ x<−2或2<x<4}7.如果集合U={1,2,3,4,5,6,7,8},A={2,4,8},B={1,3,4,7},那么(∁U A)∩B等于( )A.{4}B.{1,3,4,5,7,8}C.{2,8}D.{1,3,7}8.已知集合A={−1,0,1,2},B={y∣y=2x},则A∩B=( )A.{−1,0,1}B.{1,2}C.{0,1,2}D.{−1,1,2}9.已知全集U={−1,0,1,2},A={−1,1},则集合∁U A=( )A.{0,2}B.{−1,0}C.{0,1}D.{1,2}10.已知全集U={2,4,6,8,10},集合A={2,4},则∁U A=( )A.{2,4}B.{6,8,10}C.{2,4,6,8}D.{2,4,6,8,10}二、填空题(共6题)11.元素与集合的概念(1)集合的意义:把能够组成的整体叫做集合,简称集.集合常用大写字母A,B,C,⋯表示.(2)集合的元素:集合中的叫做这个集合的元素,集合中的元素用小写字母a,b,c,⋯表示.对于一个给定的集合,集合中的元素是的、的.12.若全集U=R,集合A={x∣ x≥1},则∁U A=.≤x≤1;q:a≤x≤a+1,若p是q的充分不必要条件,则实数a的取值范围是.13.设p:1214.设全集U={0,1,2},集合A={0,1},则∁U A=.15.已知全集U=R,集合A=(−∞,2),则集合∁U A=.16.已知集合A={x∣−1<x<2},B={0,1,2,3},则A∩B=.三、解答题(共6题)17.设A={x∣ x2−4x−5=0},B={x∣ x2=1},求A∪B,A∩B.18.说明下列各集合的含义:};A={y∣ y=1x=1};B={(x,y)∣ yx−3C={(0,1)};D={x+y=1,x−y=−1}.19.指出下列各集合之间的关系,并用Venn图表示:A={x∣∣x是四边形},B={x∣∣x是平行四边形},C={x∣∣x是矩形},D={x∣∣x是正方形}.20.指出下列各题中,p是q的什么条件(在”充分不必要条件“”必要不充分条件“”充要条件“”既不充分也不必要条件“中选出一种作答).(1) 在△ABC中,p:∠A>∠B,q:BC>AC;(2) 对于实数 x ,y ,p :x +y =8,q :x =2 且 y =6 ;(3) 已知 x,y ∈R ,p :(x −1)2+(y −2)2=0,q :(x −1)⋅(y −2)=0.21. 设 k 为实数,求关于 x ,y 的方程组 {y =kx +1,y =2x +3的解集.22. 已知 A ={x∣ x 2−3ax +2a 2>0,a >0},B ={x∣ x 2−x −6≥0},若 x ∈A 是 x ∈B 的必要不充分条件,求实数 a 的取值范围.答案一、选择题(共10题)1. 【答案】B【解析】若命题为p:∃x0∈Z,e x0<1,则¬p:∀x0∈Z,e x≥1.故选:B.【知识点】全(特)称命题的否定2. 【答案】C【解析】命题的否定,把∀改成∃,≤改为<.【知识点】全(特)称命题的否定3. 【答案】C【解析】A⊆B不成立,说明A中至少有一个元素不属于B.【知识点】包含关系、子集与真子集4. 【答案】C【知识点】交、并、补集运算5. 【答案】A【知识点】交、并、补集运算6. 【答案】C【解析】根据题意,x2>4⇒x<−2或x>2,即B={x∣ x2>4}={x∣ x<−2或x>2},则A∩B={x∣ x<−2或2<x≤4}.【知识点】交、并、补集运算7. 【答案】D【解析】由题∁U A={1,3,5,6,7},故∁U A∩B={1,3,7}.【知识点】交、并、补集运算8. 【答案】B【知识点】交、并、补集运算9. 【答案】A【解析】全集U={−1,0,1,2},A={−1,1},所以集合∁U A={0,2}.【知识点】交、并、补集运算10. 【答案】B【解析】∁U A={6,8,10}.【知识点】交、并、补集运算二、填空题(共6题)11. 【答案】确切指定的一些对象;各个对象;确定;各不相同【知识点】集合的概念12. 【答案】{x∣ x<1}【知识点】交、并、补集运算13. 【答案】{a∣ 0≤a≤12}【解析】因为p:12≤x≤1,q:a≤x≤a+1,p是q的充分不必要条件,所以{a<12,a+1≥1或{a≤1 2 ,a+1>1,解得0≤a≤12.【知识点】充分条件与必要条件14. 【答案】{2}【知识点】交、并、补集运算15. 【答案】[2,+∞)【知识点】交、并、补集运算16. 【答案】{0,1}【知识点】交、并、补集运算三、解答题(共6题)17. 【答案】A∪B={−1,1,5},A∩B={−1}.【知识点】交、并、补集运算18. 【答案】 A 表示 y 的取值集合,由反比例函数的图象,知 A ={y ∈R∣ y ≠0}.B 的代表元素是点 (x,y ),B 表示直线 y =x −3 上除去点 (3,0) 外所有点组成的集合.C 表示一个单元素集,元素是一个有序实数对 (0,1).D 表示以方程“x +y =1”和“x −y =−1”为元素的一个二元素集.【知识点】集合的表示方法19. 【答案】 A ⫌B ⫌C ⫌D .【知识点】集合基本运算的Venn 图示20. 【答案】(1) 在 △ABC 中,显然有 ∠A >∠B ,⇔BC >AC ,所以 p 是 q 的充要条件.(2) 因为 x =2 且 y =6⇒x +y =8,但 x +y =8⇏x =2 且 y =6,所以 p 是 q 的必要不充分条件.(3) 因为 p :A ={(1,2)},q :B ={(x,y )∣ x =1或y =2},所以 A 是 B 的真子集,所以 p 是 q 的充分不必要条件.【知识点】充分条件与必要条件21. 【答案】原方程组中两式相减,得 (k −2)x =2,当 k ≠2 时,x =2k−2,代入 y =kx +1,得 y =3k−2k−2,故原方程组的解集为 {(2k−2,3k−2k−2)}; 当 k =2 时,原方程组无解,即原方程组的解集为 ∅.【知识点】交、并、补集运算22. 【答案】 B ={x∣ x ≤−2或x ≥3},A ={x∣ x <a 或x >2a,a >0},因为 x ∈A 是 x ∈B 的必要不充分条件,所以 B 是 A 的真子集,所以 {a >−2,2a <3,a >0⇒0<a <32.【知识点】充分条件与必要条件、包含关系、子集与真子集。
§1.3简单的逻辑联结词课时目标 1.了解逻辑联结词“或”、“且”、“非”的含义.2.会用逻辑联结词联结两个命题或改写某些数学命题,并能判断命题的真假.1.用逻辑联结词构成新命题(1)用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作__________,读作__________.(2)用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作________,读作__________.(3)对一个命题p全盘否定,就得到一个新命题,记作________,读作________或____________.2.含有逻辑联结词的命题的真假判断一、选择题1.已知p:2+2=5;q:3>2,则下列判断错误的是()A.“p∨q”为真,“綈q”为假B.“p∧q”为假,“綈p”为真C.“p∧q”为假,“綈p”为假D.“p∨q”为真,“綈p”为真2.已知p:∅,q:{2}∈{1,2,3}.由它们构成的新命题“綈p”,“綈q”,“p∧q”,“p ∨q”中,真命题有()A.1个B.2个C.3个D.4个3.下列命题:①2010年2月14日既是春节,又是情人节;②10的倍数一定是5的倍数;③梯形不是矩形.其中使用逻辑联结词的命题有()A.0个B.1个C.2个D.3个4.设p、q是两个命题,则新命题“綈(p∨q)为假,p∧q为假”的充要条件是()A.p、q中至少有一个为真B.p、q中至少有一个为假C.p、q中有且只有一个为假D.p为真,q为假5.命题p:在△ABC中,∠C>∠B是sin C>sin B的充分不必要条件;命题q:a>b是ac2>bc2的充分不必要条件.则()A.p假q真B.p真q假C.p∨q为假D.p∧q为真6.下列命题中既是p∧q形式的命题,又是真命题的是()A.10或15是5的倍数B.方程x2-3x-4=0的两根是-4和1C.方程x2+1=0没有实数根D.有两个角为45°的三角形是等腰直角三角形7.“2≤3”中的逻辑联结词是________,它是________(填“真”,“假”)命题.8.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的范围是____________.9.已知a、b∈R,设p:|a|+|b|>|a+b|,q:函数y=x2-x+1在(0,+∞)上是增函数,那么命题:p∨q、p∧q、綈p中的真命题是________.三、解答题10.写出由下列各组命题构成的“p或q”、“p且q”、“綈p”形式的复合命题,并判断真假.(1)p:1是质数;q:1是方程x2+2x-3=0的根;(2)p:平行四边形的对角线相等;q:平行四边形的对角线互相垂直;(3)p:0∈∅;q:{x|x2-3x-5<0}⊆R;(4)p:5≤5;q:27不是质数.11.已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,求m的取值范围.能力提升12.命题p:若a,b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y=|x-1|-2 的定义域是(-∞,-1]∪[3,+∞),则()A.“p或q”为假B.“p且q”为真C.p真q假D.p假q真13.设有两个命题.命题p:不等式x2-(a+1)x+1≤0的解集是∅;命题q:函数f(x)=(a+1)x 在定义域内是增函数.如果p∧q为假命题,p∨q为真命题,求a的取值范围.1.从集合的角度理解“且”“或”“非”.设命题p:x∈A.命题q:x∈B.则p∧q⇔x∈A且x∈B⇔x∈A∩B;p∨q⇔x∈A或x∈B⇔x∈A∪B;綈p⇔x∉A⇔x∈∁U A.2.对有逻辑联结词的命题真假性的判断当p、q都为真,p∧q才为真;当p、q有一个为真,p∨q即为真;綈p与p的真假性相反且一定有一个为真.3.含有逻辑联结词的命题否定“或”“且”联结词的否定形式:“p或q”的否定形式“綈p且綈q”,“p且q”的否定形式是“綈p或綈q”,它类似于集合中的“∁U(A∪B)=(∁U A)∩(∁U B),∁U(A∩B)=(∁U A)∪(∁U B)”.§1.3 简单的逻辑联结词 答案知识梳理1.(1)p ∧q “p 且q ” (2)p ∨q “p 或q ”(3)綈p “非p ” “p 的否定”作业设计1.C [p 假q 真,根据真值表判断“p ∧q ”为假,“綈p ”为真.]2.B [∵p 真,q 假,∴綈q 真,p ∨q 真.]3.C [①③命题使用逻辑联结词,其中,①使用“且”,③使用“非”.]4.C [因为命题“綈(p ∨q )”为假命题,所以p ∨q 为真命题.所以p 、q 一真一假或都是真命题. 又因为p ∧q 为假,所以p 、q 一真一假或都是假命题,所以p 、q 中有且只有一个为假.]5.C [命题p 、q 均为假命题,∴p ∨q 为假.]6.D [A 中的命题是p ∨q 型命题,B 中的命题是假命题,C 中的命题是綈p 的形式,D 中的命题为p ∧q 型,且为真命题.]7.或 真8.[1,2)解析 x ∈[2,5]或x ∈(-∞,1)∪(4,+∞),即x ∈(-∞,1)∪[2,+∞),由于命题是假命题,所以1≤x <2,即x ∈[1,2).9.綈p解析 对于p ,当a >0,b >0时,|a |+|b |=|a +b |,故p 假,綈p 为真;对于q ,抛物线y =x 2-x+1的对称轴为x =12,故q 假,所以p ∨q 假,p ∧q 假. 这里綈p 应理解成|a |+|b |>|a +b |不恒成立,而不是|a |+|b |≤|a +b |.10.解 (1)p 为假命题,q 为真命题.p 或q :1是质数或是方程x 2+2x -3=0的根.真命题.p 且q :1既是质数又是方程x 2+2x -3=0的根.假命题.綈p :1不是质数.真命题.(2)p 为假命题,q 为假命题.p 或q :平行四边形的对角线相等或互相垂直.假命题.p 且q :平行四边形的对角线相等且互相垂直.假命题.綈p :有些平行四边形的对角线不相等.真命题.(3)∵0∉∅,∴p 为假命题,又∵x 2-3x -5<0,∴3-292<x <3+292, ∴{x |x 2-3x -5<0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |3-292<x <3+292⊆R 成立. ∴q 为真命题.∴p 或q :0∈∅或{x |x 2-3x -5<0}⊆R ,真命题,p 且q :0∈∅且{x |x 2-3x -5<0}⊆R ,假命题,綈p :0∉∅,真命题.(4)显然p :5≤5为真命题,q :27不是质数为真命题,∴p 或q :5≤5或27不是质数,真命题, p 且q :5≤5且27不是质数,真命题,綈p :5>5,假命题.11.解 若方程x 2+mx +1=0有两个不等的负根,则⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0,解得m >2,即p :m >2. 若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0,解得1<m <3,即q :1<m <3.因p 或q 为真,所以p 、q 至少有一个为真.又p 且q 为假,所以p 、q 至少有一个为假.因此,p 、q 两命题应一真一假,即p 为真,q 为假,或p 为假,q 为真.所以⎩⎪⎨⎪⎧ m >2,m ≤1或m ≥3,或⎩⎨⎧ m ≤2,1<m <3. 解得m ≥3或1<m ≤2.12.D [当a =-2,b =2时,从|a |+|b |>1不能推出|a +b |>1,所以p 假,q 显然为真.]13.解 对于p :因为不等式x 2-(a +1)x +1≤0的解集是∅,所以Δ=[-(a +1)]2-4<0. 解不等式得:-3<a <1.对于q :f (x )=(a +1)x 在定义域内是增函数,则有a +1>1,所以a >0.又p ∧q 为假命题,p ∨q 为真命题,所以p 、q 必是一真一假.当p 真q 假时有-3<a ≤0,当p 假q 真时有a ≥1.综上所述,a 的取值范围是(-3,0]∪[1,+∞).。
人教A版数学必修一第一章一、单选题1.设集合A={x|x2―4x+3≤0},B={x|2<x<4},则A∪B=( )A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.集合A={x∈N|―1<x<3}的真子集的个数为( )A.3B.4C.7D.83.下列式子中,不正确的是( )A.3∈{x|x≤4}B.{―3}∩R={―3}C.{0}∪∅=∅D.{―1}⊆{x|x<0} 4.已知集合M={1,4,2x},N={1,x2},若N⊆M,则实数x=( )A.-2或2B.0或2C.-2或0D.-2或0或25.下列四个条件中,使a>b成立的必要而不充分的条件是( )A.a>b﹣1B.a>b+1C.|a|>|b|D.2a>2b6.在平面直角坐标系xOy中,设Ω为边长为1的正方形内部及其边界的点构成的集合.从Ω中的任意点P作x轴、y轴的垂线,垂足分别为M P,N p.所有点M P构成的集合为M,M中所有点的横坐标的最大值与最小值之差记为x(Ω);所有点N P构成的集合为N,N中所有点的纵坐标的最大值与最小值之差记为y(Ω).给出以下命题:①x(Ω)的最大值为2:②x(Ω)+y(Ω)的取值范围是[2,22];③x(Ω)―y(Ω)恒等于0.其中所有正确结论的序号是( )A.①②B.②③C.①③D.①②③7.已知M={(x,y)|y―3x―2=3},N={(x,y)|ax+2y+a=0}且M∩N=∅,则a=( )A.-6或-2B.-6C.2或-6D.-28.设集合A={x|(x+2)(x―3)⩽0},B={a},若A∪B=A,则a的最大值为( )A.-2B.2C.3D.4二、多选题9.已知命题p:关于x的不等式2x―1≥0,命题q:a<x<a+1,若p是q的必要非充分条件,则实数a 的取值可以为( )A.a≥0B.a≥1C.a≥2D.a≥310.已知集合M={x∣x=kπ4+π4,k∈Z},集合N={x∣x=kπ8―π4,k∈Z},则( )A.M∩N≠ϕB.M⊆N C.N⊆M D.M∪N=M11.已知正实数m,n满足9n2―24n+17―4m2+1=2m+3n―4,若方程1m +1n=t有解,则实数t的值可以为( )A.5+264B.2+32C.1D.11412.1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断下列选项中,可能成立的是( )A.M={x∈Q|x<2},N={x∈Q|x≥2}满足戴德金分割B.M没有最大元素,N有一个最小元素C.M没有最大元素,N没有最小元素D.M有一个最大元素,N有一个最小元素三、填空题13.已知集合A={x|x2+2x-3≤0},集合B={x||x-1|<1},则A∩B= .14.设集合M={x|a1x2+b1x+c1=0},N={x|a2x2+b2x+c2=0},则方程a1x2+b1x+c1a2x2+b2x+c2=0的解集用集合M、N可表示为 .15.若规定集合M={a1,a2,…,a n}(n∈N*)的子集{ a i1,a i2,… a in}(m∈N*)为M的第k个子集,其中k= 2i1―1+ 2i2―1+…+ 2i n―1,则M的第25个子集是 16.记关于x的方程a x2―2ax+1=0在区间(0,3]上的解集为A,若A有2个不同的子集,则实数a的取值范围为 .四、解答题17.已知集合M={x|―2<x<4},N={x|x+a―1>0}.(1)若M∪N={x|x>―2},求实数a的取值范围;(2)若x∈N的充分不必要条件是x∈M,求实数a的取值范围.18.已知命题p:∀x∈R,|x|+x≥0;q:关于x的方程x2+mx+1=0有实数根.(1)写出命题p的否定,并判断命题p的否定的真假;(2)若命题“p∧q”为假命题,求实数m的取值范围.19.设全集为R,集合A={x|x2―7x―8>0},B={x|a+1<x<2a―3}.(1)若a=6,求A∩∁R B;(2)在①A∪B=A;②A∩B=B;③(∁R A)∩B=∅,这三个条件中任选一个作为已知条件,求实数a的取值范围.20.已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1}.(Ⅰ)当m=-3时,求( ∁R A)∩B;(Ⅱ)当A∩B=B时,求实数m的取值范围.21.已知集合A={―1,1},B={x|x2―2ax+b=0},若B≠∅,且A∪B=A求实数a,b的值。
高中数学第一章常用逻辑用语章末演练轻松闯关一含解析新人教A 版选修11[学生用书P91(单独成册)])[A 基础达标]1.命题“∃x 0∈R ,1<f (x 0)≤2”的否定形式是( ) A .∀x ∈R ,1<f (x )≤2 B .∃x ∈R ,1<f (x )≤2 C .∃x ∈R ,f (x )≤1或f (x )>2 D .∀x ∈R ,f (x )≤1或f (x )>2解析:选D.根据特称命题的否定是全称命题可知原命题的否定形式为“∀x ∈R ,f (x )≤1或f (x )>2”.故选D.2.命题“若a >b ,则a +c >b +c ”的否命题是( ) A .若a ≤b ,则a +c ≤b +c B .若a +c ≤b +c ,则a ≤b C .若a +c >b +c ,则a >b D .若a >b ,则a +c ≤b +c解析:选A.否命题是将原命题的条件和结论都否定,故命题“若a >b ,则a +c >b +c ”的否命题是“若a ≤b ,则a +c ≤b +c ”,故选A.3.设p :log 2x <0,q :⎝ ⎛⎭⎪⎫12x -1>1,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B.p :log 2x <0⇔0<x <1;q :⎝ ⎛⎭⎪⎫12x -1>1⇔x <1,所以p ⇒q 但q ⇒/p ,所以p 是q 的充分不必要条件,故选B.4.下列表述错误的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .命题“若a ∈M ,则b ∉M ”的等价命题是“若b ∈M ,则a ∉M ”C .“x >2”是“x 2>4”的充分不必要条件D .对任意的φ∈R ,函数y =sin(2x +φ)都不是偶函数解析:选D.当α=0,β=π3时,tan ⎝⎛⎭⎪⎫0+π3=tan 0+tan π3成立,故选项A 正确.对于选项B 、C ,显然正确.在D 中,存在φ=k π+π2(k ∈Z )时,函数y =sin(2x +φ)是偶函数,D 错误.5.已知命题p :∃x 0∈R ,x 0-2>lg x 0,命题q :∀x ∈R ,x 2>0,则( ) A .命题p ∨q 是假命题 B .命题p ∧q 是真命题 C .命题p ∧(﹁q )是真命题 D .命题p ∨(﹁q )是假命题解析:选C.当x =10时,x -2=8,lg x =lg 10=1,故命题p 为真命题;令x =0,则x 2=0,故命题q 为假命题.依据复合命题真假性的判断法则,可知命题p ∨q 是真命题,命题p ∧q 是假命题,﹁q 是真命题,进而得到命题p ∧(﹁q )是真命题,命题p ∨(﹁q )是真命题.故选C.6.写出命题“若方程ax 2-bx +c =0的两根都大于0,则ac >0”的一个等价命题:________________.解析:一个命题与其逆否命题是等价命题.答案:若ac ≤0,则方程ax 2-bx +c =0的两根不都大于07.已知p :-3<x -a <3,q :(x -1)(2-x )>0.若﹁p 是﹁q 的充分条件,则实数a 的取值范围是________.解析:p :-3<x -a <3,即a -3<x <a +3;q :(x -1)(2-x )>0,即1<x <2,所以﹁p :x ≤a -3或x ≥a +3,﹁q :x ≤1或x ≥2;而﹁p 是﹁q 的充分条件,所以⎩⎪⎨⎪⎧a -3≤1,a +3≥2.解得-1≤a ≤4.答案:[-1,4]8.设命题p :c 2<c 和命题q :∀x ∈R ,x 2+4cx +1>0,且p ∨q 为真,p ∧q 为假,则实数c 的取值范围是________.解析:解不等式c 2<c ,得0<c <1,即命题p :0<c <1, 所以命题﹁p :c ≤0或c ≥1. 又由(4c )2-4<0,得-12<c <12,即命题q :-12<c <12,所以命题﹁q :c ≤-12或c ≥12,由题意知p 与q 中一个为真命题,一个为假命题.当p 真q 假时,实数c 的取值范围是12≤c <1.当p 假q 真时,实数c 的取值范围是-12<c ≤0.综上所述,实数c 的取值范围是-12<c ≤0或12≤c <1.答案:⎝ ⎛⎦⎥⎤-12,0∪⎣⎢⎡⎭⎪⎫12,19.指出下列命题中,p 是q 的什么条件: (1)p :{x |x >-2或x <3};q :{x |x 2-x -6<0}; (2)p :a 与b 都是奇数;q :a +b 是偶数;(3)p :0<m <13;q :方程mx 2-2x +3=0有两个同号且不相等的实根.解:(1)因为{x |x >-2或x <3}=R ,{x |x 2-x -6<0}={x |-2<x <3},所以{x |x >-2或x <3}⃘ {x |-2<x <3},而{x |-2<x <3}{x |x >-2或x <3}.所以p 是q 的必要不充分条件.(2)因为a ,b 都是奇数⇒a +b 为偶数,而a +b 为偶数⇒/ a ,b 都是奇数,所以p 是q 的充分不必要条件.(3)mx 2-2x +3=0有两个同号不等实根⇔⎩⎪⎨⎪⎧Δ>0,3m >0⇔⎩⎪⎨⎪⎧4-12m >0,m >0⇔⎩⎪⎨⎪⎧m <13,m >0⇔0<m <13. 所以p 是q 的充要条件.10.设函数y =lg(-x 2+4x -3)的定义域为A ,函数y =2x +1,x ∈(0,m )的值域为B . (1)当m =2时,求A ∩B ;(2)若“x ∈A ”是“x ∈B ”的必要不充分条件,求实数m 的取值范围. 解:(1)由题意得-x 2+4x -3>0,解得1<x <3, 所以A =(1,3), 又函数y =2x +1在区间(0,m )上单调递减, 所以y ∈⎝⎛⎭⎪⎫2m +1,2,即B =⎝ ⎛⎭⎪⎫2m +1,2,当m =2时,B =⎝ ⎛⎭⎪⎫23,2,所以A ∩B =(1,2). (2)首先要求m >0,因为“x ∈A ”是“x ∈B ”的必要不充分条件, 所以B A ,即⎝⎛⎭⎪⎫2m +1,2(1,3),从而2m +1≥1,解得0<m ≤1. [B 能力提升]11.已知函数f (x )=⎩⎪⎨⎪⎧3x,x <0,m -x 2,x ≥0,给出两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解,命题q :若m =19,则f (f (-1))=0,那么,下列命题为真命题的是( )A .p ∧qB .(﹁p )∧qC .p ∧(﹁q )D .(﹁p )∧(﹁q )解析:选B.因为3x>0,当m <0时,m -x 2<0, 所以命题p 为假命题;当m =19时,因为f (-1)=3-1=13,所以f (f (-1))=f ⎝ ⎛⎭⎪⎫13=19-⎝ ⎛⎭⎪⎫132=0,所以命题q 为真命题,逐项检验可知,只有(﹁p )∧q 为真命题,故选B.12.已知函数f (x )=x 2-2x ,g (x )=ax +2(a >0),若∀x 1∈[-1,2],∃x 2∈[-1,2],使得f (x 1)=g (x 2),则实数a 的取值范围是__________.解析:当∀x 1∈[-1,2]时,由f (x )=x 2-2x 得,对称轴是直线x =1,f (1)=-1是最小值,f (-1)=3是最大值,所以f (x 1)∈[-1,3].又因为∀x 1∈[-1,2],∃x 2∈[-1,2],使得f (x 1)=g (x 2),所以当x 2∈[-1,2]时,[-1,3]⊆g (x 2).因为a >0,所以g (x )=ax +2是增函数,所以⎩⎪⎨⎪⎧-a +2≤-1,2a +2≥3,解得a ≥3,综上所述,实数a 的取值范围是[3,+∞).答案:[3,+∞)13.设有两个命题:p :关于x 的不等式sin x cos x >m 2+m2-1的解集是R ;q :幂函数f (x )=x7-3m在(0,+∞)上是减函数.若“p 且q ”是假命题,“p 或q ”是真命题,求m 的取值范围.解:因为“p 且q ”是假命题,所以p ,q 中至少有一个是假命题. 因为“p 或q ”是真命题,所以p ,q 中至少有一个是真命题. 故p 和q 两个命题一真一假.若p 真,则2m 2+m -2<-1,即2m 2+m -1<0,所以-1<m <12.若q 真,则7-3m <0,所以m >73.p 真q 假时,-1<m <12;p 假q 真时,m >73.所以m 的取值范围是⎝ ⎛⎭⎪⎫-1,12∪⎝ ⎛⎭⎪⎫73,+∞. 14.(选做题)已知函数f (x )=4sin 2⎝ ⎛⎭⎪⎫π4+x -23cos 2x -1.给定p :x <π4或x >π2,x ∈R .q :-2<f (x )-m <2.若﹁p 是q 的充分条件,求实数m 的取值范围.解:由q 可得⎩⎪⎨⎪⎧m >f (x )-2m <f (x )+2.因为﹁p 是q 的充分条件,所以在π4≤x ≤π2的条件下,⎩⎪⎨⎪⎧m >f (x )-2m <f (x )+2恒成立.又f (x )=2⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫π2+2x -23cos 2x -1 =2sin 2x -23cos 2x +1 =4sin ⎝ ⎛⎭⎪⎫2x -π3+1, 由π4≤x ≤π2,知π6≤2x -π3≤2π3, 所以当x =5π12时,f (x )max =5,当x =π4时,f (x )min =3.所以⎩⎪⎨⎪⎧m >5-2m <3+2,即3<m <5.所以m 的取值范围是(3,5).。
高中数学第一章常用逻辑用语测评(含解析)新人教A版选修11测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.下列语句是真命题的是()A.这是一棵大树B.x+y+z=3C.函数f(x)=x2是单调增函数D.素数不一定是奇数解析:选项A和B不是命题,选项C是假命题,2是素数,但不是奇数,故选项D正确.答案:D2.(2016辽宁沈阳高二检测)命题“若x<0,则ln(x+1)<0”的否命题是()A.若x≥0,则ln(x+1)<0B.若x<0,则ln(x+1)≥0C.若x≥0,则ln(x+1)≥0D.若ln(x+1)≥0,则x≥0解析:由原命题与其逆否命题之间的关系可知,原命题的逆否命题为“若x≥0,则ln(x+1)≥0”.答案:C3.(2016四川成都高二月考)已知命题p:若(a-b)3b2>0,则a>b,则在命题p的逆命题、否命题和逆否命题中,错误命题的个数为()A.0B.1C.2D.3解析:原命题p为真,故其逆否命题为真;p的逆命题为假,故其否命题也为假,因此错误命题个数为2.答案:C4.(原创题)命题“∀x>0,>0”的否定是()A.∃x<0,≤0B.∃x>0,0<x≤1C.∀x>0,≤0D.∀x<0,0<x≤1答案:B5.(2016河北石家庄月考)已知直线l的倾斜角为α,斜率为k,那么“α>”是“k>”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件解析:当<α<π时,k<0,当k>时,<α<,所以“α>”是“k>”的必要而不充分条件,故答案:B6.(原创题)设命题p:函数y=在定义域上是增函数;命题q:∃a,b∈(0,+∞),当a+b=1时,=3,以下说法正确的是()A.p∨q为真B.p∧q为真C. p为假D.p∨q为假解析:显然命题p为假命题,又当a,b>0,a+b=1时,=(a+b)=2+≥4,故不存在a,b∈(0,+∞),使得=3,即命题q也为假命题.因此p∨q为假,故选D.答案:D7.(2016吉林高二检测)下列命题的否定为假命题的是()A.∃x∈R,x2+2x+2≤0B.∀x∈R,lg x<1C.所有能被3整除的整数都是奇数D.∀x∈R,sin2x+cos2x=1解析:选项A中,因为x2+2x+2=(x+1)2+1>0,所以∃x∈R,x2+2x+2≤0是假命题,其否定为真命题.选项B中,当x>10时,lg x>1,所以∀x∈R,lg x<1是假命题,其否定为真命题.选项C中,6能被3整除,但6是偶数,所以这是假命题,其否定为真命题.选项D中的命题显然成立,所以其否定是假命题,故选D.答案:D8.(2016吉林高二检测)已知命题 p:存在x∈(1,2)使得e x-a>0,若p是真命题,则实数a的取值范围为()A.(-∞,e)B.(-∞,e]C.(e2,+∞)D.[e2,+∞)解析:因为p是真命题,所以 p为假命题,所以∀x∈(1,2),有e x-a≤0,即a≥e x,又y=e x在(1,2)上的最大值为e2,所以a≥e2.答案:D9.(2016河南新乡模拟)已知p:∃x∈R,mx2+1≤0,q:∀x∈R,x2+mx+1>0,若p∨q为假命题,则实数m的取值范围为()A.m≥2B.m≤-2C.m≤-2或m≥2D.-2≤m≤2解析:由p:∃x∈R,mx2+1≤0,可得m<0,由q:∀x∈R,x2+mx+1>0,可得Δ=m2-4<0,解得-2<m<2,因为p ∨q为假命题,所以p与q都是假命题,若p是假命题,则有m≥0;若q是假命题,则有m≤-2或m≥2,故符合条件的实数m的取值范围为m≥2.答案:A10.已知p:函数f(x)=(x-a)2在(-∞,1)上是减函数,q:∀x>0,a≤恒成立,则 p是q的()A.充分不必要条件B.必要不充分条件C.充要条件解析:由p:函数f(x)=(x-a)2在(-∞,1)上是减函数,得a≥1.所以 p:a<1;由q:∀x>0,a≤恒a≤2,所以 p是q的充分不必要条件.答案:A11.导学号59254013(原创题)已知函数f(x)=,设命题p:∀a∈R,函数f(x)的值域不可能是(0,+∞);命题q:∃a∈R,使函数f(x)的单调递增区间是(-∞,-2].那么下列命题为真命题的是()A.p∧qB.p∨(q)C.(p)∧qD.(p)∧(q)解析:当a=0时,f(x)=的值域为(0,+∞),故命题p为假命题;要使函数f(x)的单调递增区间是(-∞,-2],只需y=ax2+2x-1的单调递减区间是(-∞,-2],这时只要满足解得a=,因此命题q为真命题,故(p)∧q为真.答案:C12.(改编题)若“x>1”是“不等式2x>a-x成立”的必要不充分条件,则实数a的取值范围是()A.a>3B.a<3C.a>4D.a<4解析:若2x>a-x,则2x+x>a,设f(x)=2x+x,该函数为增函数.由题知2x+x>a成立,即f(x)>a成立能得到x>1,并且反之不成立.因为x>1时,f(x)>3,所以a>3.答案:A二、填空题(本大题共4小题,每小题5分,共20分)13.(2016山西大同高二检测)命题“∃x0∈R,sin x0+2>cos x0”的否定为.解析:因为∃x0∈R,sin x0+2>cos x0,所以其否定为∀x∈R,sin x+2x2≤cos x.答案:∀x∈R,sin x+2x2≤cos x14.(2016山东济南高二检测)已知命题p:若a,b∈R,则ab=0是a=0的充分条件,命题q:函数y=的定义域是[3,+∞),则“p∨q”“p∧q”“ p”中是真命题的为.解析:依题意知p假,q真,所以“p∨q”,“ p”是真命题.答案:p∨q, p15.(原创题)函数f(x)=有且只有一个零点的充分必要条件是.解析:当x>0时,x=1是函数的一个零点,要使函数有且只有一个零点,应使函数f(x)在(-∞,0]上没有零点,即-2x+a=0无解,而当x≤0时,0<2x≤1,所以实数a应满足a≤0或a>1.答案:a≤0或a>116.给出如下四个命题:①若“p∧q”为假命题,则p,q均为假命题;②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2α≤2b-1”;③“∀x∈R,x2+1≥0”的否定是“∃x∈R,x2+1<0”;④在△ABC中,“A>B”是“sin A>sin B”的充要条件.其中假命题的个数是.解析:若“p∧q”为假命题,则p,q至少有一个为假命题,故①是假命题;②是真命题;“∀x∈R,x2+1≥0”的否定是“∃x∈R,x2+1<0”,故③是假命题;在△ABC中,若A>B,则a>b,根据正弦定理可得sin A>sin B;逆向推理同样成立,故④是真命题.故假命题有2个.答案:2三、解答题(本大题共6小题,共70分)17.(本小题满分10分)写出下列命题的逆命题、否命题以及逆否命题:(1)若α-β=,则sin α=cos β;a,b,c,d为实数,若a≠b,c≠d,则a+c≠b+d.解:(1)逆命题:若sinα=cosβ,则α-β=;否命题:若α-β≠,则sinα≠cosβ;逆否命题:若sinα≠cosβ,则α-β≠.(2)逆命题:已知a,b,c,d为实数,若a+c≠b+d,则a≠b,c≠d;否命题:已知a,b,c,d为实数,若a=b或c=d,则a+c=b+d;逆否命题:已知a,b,c,d为实数,若a+c=b+d,则a=b或c=d.18.(本小题满分12分)判断下列命题是全称命题还是特称命题,并判断其真假:(1)对数函数都是单调函数;(2)至少有一个整数,它既能被11整除,又能被9整除;(3)∀x∈(0,+∞),x+≥2;(4)∃x0∈Z,log2x0>2.解:(1)本题隐含了全称量词“所有的”,其实命题应为“所有的对数函数都是单调函数”,是全称命题,真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,真命题.(3)命题中含有全称量词“∀”,是全称命题,真命题.(4)命题中含有存在量词“∃”,是特称命题,真命题.19.(本小题满分12分)已知命题:“∃x∈(-1,1),使等式x2-x-m=0成立”是真命题.(1)求实数m的取值集合M;(2)设不等式(x-a)(x+a-2)<0的解集为N,若x∈N是x∈M的必要条件,求a的取值范围.解:(1)由题意知,方程x2-x-m=0在(-1,1)上有解,即m的取值范围为函数y=x2-x在(-1,1)上的值域,易得M=.(2)因为x∈N是x∈M的必要条件,所以M⊆N.当a=1时,解集N为空集,不满足题意;当a>1时,a>2-a,此时集合N={x|2-a<x<a},则解得a>;当a<1时,a<2-a,此时集合N={x|a<x<2-a},则解得a<-.综上,a>或a<-.20.(本小题满分12分)已知曲线C:x2+y2+Gx+Ey+F=0(G2+E2-4F>0),求曲线C在x轴上所截线段长度为1的充要条件,并证明.解:所求的充要条件是G2-4F=1.(1)必要性:令y=0,则x2+Gx+F=0.设x1,x2为此方程的根,若|x1-x2|==1,则G2-4F=1.(2)充分性:若G2-4F=1,x2+Gx+F=0有两根为x1,x2,且x1+x2=-G,x1·x2=F,|x1-x2|2=(x1+x2)2-4x1·x2=G2-4F=1.21.(本小题满分12分)已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],设命题p:“f(x)的定义域为R”;命题q:“f(x)的值域为R”.(1)分别求命题p,q为真时实数a的取值范围;p是q的什么条件?请说明理由.解:(1)命题p为真,即f(x)的定义域是R,等价于(a2-1)x2+(a+1)x+1>0恒成立,等价于a=-1或解得a≤-1或a>.故实数a的取值范围为(-∞,-1]∪;命题q为真,即f(x)的值域是R,等价于u=(a2-1)x2+(a+1)x+1的值域范围大于(0,+∞),等价于a=1或解得1≤a≤,故实数a的取值范围为.(2)由(1)知, p:a∈;q:a∈.而,故 p是q的必要不充分条件.22.导学号59254014(本小题满分12分)已知命题p:函数f(x)=|2x+3c|在[-1,+∞)上单调递增;命题q:函数g(x)=+2有零点.(1)若命题p和q均为真命题,求实数c的取值范围;c,使得p∧( q)是真命题?若存在,求出c的取值范围;若不存在,说明理由.解:由于f(x)=|2x+3c|=所以f(x)的单调递增区间是,又因为f(x)在[-1,+∞)上单调递增,所以-≤-1,解得c≥;由于函数g(x)=+2有零点,所以方程+2=0有实数根,即2x2+cx+2=0有实数根,因此c2-16≥0,解得c≥4或c≤-4.(1)当命题p和q均为真命题时,应有因此c≥4.(2)要使p∧(q)是真命题,应使p真q假,因此有≤c<4,故存在实数c,使得p∧( q)是真命题,其取值范围是.。
第一章 常用逻辑用语 单元测试一、选择题1. 下列语句中是命题的是( )A. 周期函数的和是周期函数吗?B. 0sin 451=C. 2210x x +->D. 梯形是不是平面图形呢?2. 在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A. 都真B. 都假C. 否命题真D. 逆否命题真3. 有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件.③0a b >>是33a b >的充要条件. 则其中正确的说法有( )A. 0个B. 1个C. 2个D. 3个4. 下列说法中正确的是( )A. 一个命题的逆命题为真,则它的逆否命题一定为真B. “a b >”与“ a c b c +>+”不等价C. “220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D. 一个命题的否命题为真,则它的逆命题一定为真5. 若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零, 另一根小于零,则A 是B 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 6. 已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件二、填空题1. 命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 .2. 12:,A x x 是方程20(0)ax bx c a ++=≠的两实数根;12:b B x x a +=-,则A 是B 的 条件.3. 用“充分、必要、充要”填空:①p q ∨为真命题是p q ∧为真命题的_____________________条件; ②p ⌝为假命题是p q ∨为真命题的_____________________条件; ③:23A x -<, 2:4150B x x --<, 则A 是B 的___________条件.4. 命题“2230ax ax -->不成立”是真命题,则实数a 的取值范围是_______.5. “a b Z +∈”是“20x ax b ++=有且仅有整数解”的__________条件.三、解答题1. 对于下述命题p ,写出“p ⌝”形式的命题,并判断“p ”与“p ⌝”的真假:(1) :p 91()A B ∈(其中全集*U N =,{}|A x x =是质数,{}|B x x =是正奇数).(2):p 有一个素数是偶数;. (3):p 任意正整数都是质数或合数; (4):p 三角形有且仅有一个外接圆.2. 已知命题),0(012:,64:22>≥-+-≤-a a x x q x p 若非p 是q 的充分不必要条件,求a 的取值范围.3. 若222a b c +=,求证:,,a b c 不可能都是奇数.4. 求证:关于x 的一元二次不等式210ax ax -+>对于一切实数x 都成立的充要条件是04a <<第一章 常用逻辑用语参考答案一、选择题1. B 可以判断真假的陈述句2. D 原命题是真命题,所以逆否命题也为真命题3. A ①220a b a b >>⇒>,仅仅是充分条件②0a b >>⇒ba 11< ,仅仅是充分条件;③330ab a b >>⇒>,仅仅是充分条件4. D 否命题和逆命题是互为逆否命题,有着一致的真假性5. A :,120A a R a a ∈<⇒-<,充分,反之不行6. A :12,31p x x ⌝+≤-≤≤,22:56,560,3,2q x x x x x x ⌝-≤-+≥≥≤或p q ⌝⇒⌝,充分不必要条件二、填空题1. 若,a b 至少有一个为零,则a b ⋅为零2. 充分条件 A B ⇒3. 必要条件;充分条件;充分条件,:15,:22A x B x A B -<<<<⊆ 4. [3,0]- 2230ax ax --≤恒成立,当0a =时,30-≤成立;当0a ≠时,204120a a a <⎧⎨∆=+≤⎩得30a -≤<;30a ∴-≤≤ 5. 必要条件 左到右来看:“过不去”,但是“回得来”三、解答题1. 解:(1) :91,91p A B ⌝∉∉或;p 真,p ⌝假;(2) :p ⌝每一个素数都不是偶数;p 真,p ⌝假;(3) :p ⌝存在一个正整数不是质数且不是合数;p 假,p ⌝真;(4) :p ⌝存在一个三角形有两个以上的外接圆或没有外接圆.2. 解:{}:46,10,2,|10,2p x x x A x x x ⌝->><-=><-或或 {}22:2101,1,|1,1q x x a x a x a B x x a x a -+-≥≥+≤-=≥+≤-,或记或 而,p q A ⌝⇒∴B ,即12110,030a a a a -≥-⎧⎪+≤∴<≤⎨⎪>⎩. 3. 证明:假设,,a b c 都是奇数,则222,,a b c 都是奇数 得22a b +为偶数,而2c 为奇数,即222a b c +≠,与222a b c +=矛盾 所以假设不成立,原命题成立4. 证明:210(0)ax ax a -+>≠恒成立2040a a a >⎧⇔⎨∆=-<⎩⇔<<a04。
海南省文昌中学高中数学选修1-1 2-1《第一章 常用逻辑用语》单元测试题
一、选择题(3分×12=36分)
1.命题“梯形的两对角线互相不平分”的形式为 ( )
A .p 或q
B .p 且q
C .非p
D .简单命题
2.若命题p :2n -1是奇数,q :2n +1是偶数,则下列说法中正确的是( )
A .p 或q 为真
B .p 且q 为真
C . 非p 为真
D . 非q 为假
3.对命题p :A ∩∅=∅,命题q :A ∪∅=A ,下列说法正确的是 ( )
A .p 且q 为假
B .p 或q 为假
C .非p 为真
D .非p 为假
4.在原命题及其逆命题、否命题、逆否命题中,真命题的个数可以是……( )
A .1或2或3或4
B .0或2或4
C .1或3
D .0或4
5.“至多四个”的否定为 ( )
A .至少有四个
B .至少有五个
C .有四个
D .有五个
6.下列存在性命题中,假命题是 ( )
A .∃x ∈Z ,x 2-2x-3=0
B .至少有一个x ∈Z ,x 能被2和3整除
C .存在两个相交平面垂直于同一条直线
D .∃x ∈{x 是无理数},x 2是有理数
7.A 、B 、C 三个命题,如果A 是B 的充要条件,C 是B 的充分不必要条件,则C 是A 的( )
A .充分条件
B .必要条件
C .充要条件
D .既不充分也不必要条件
8.下列命题:
①至少有一个x 使x 2+2x +1=0成立; ②对任意的x 都有x 2+2x +1=0成立;
③对任意的x 都有x 2+2x +1=0不成立; ④存在x 使x 2+2x +1=0成立;
其中是全称命题的有 ( )
A .1个
B .2个
C .3个
D .0
9.全称命题“所有被5整除的整数都是奇数”的否定 ( )
A .所有被5整除的整数都不是奇数
B .所有奇数都不能被5整除
C .存在一个被5整除的整数不是奇数
D .存在一个奇数,不能被5整除
10.设,a R ∈b ,已知命题:p a b =;命题2
22:22a b a b q ++⎛⎫≤ ⎪⎝⎭,则p 是q 成立的( ) A .必要不充分条件 B .充分不必要条件
C .充分必要条件
D .既不充分也不必要条件
11.x 2-2x-3<0成立的一个必要不充分条件是( )
A .-1<x<3
B .0<x<3
C .-2<x<3
D .-2<x<1
12.给出命题:①∃x ∈R ,使x 3<1; ②∃x ∈Q ,使x 2=2; ③∀x ∈N ,有x 3>x 2; ④∀x ∈R ,有x 2+1>0. 其
中的真命题是:( )
A .①④
B .②③
C .①③
D .②④
二、填空题(4分×4=16分)
13.由命题p :“矩形有外接圆”,q :“矩形有内切圆”组成的复合命题“p 或q ”,“p 且q ”,“非p ”形式的命题中真命题是__________.
14.命题“不等式x 2+x -6>0的解x <-3或x >2”的逆否命题是
15.已知:对+∈∀R x ,x x a 1+
<恒成立,则实数a 的取值范围是 16.命题“∀x ∈R ,x 2-x +3>0”的否定是
三、解答题(4题共48分)
17.(14分)(1)把命题“平行于同一直线的两条直线互相平行”写成“若p则q”的形式,并写出它的逆命题、否命题、逆否命题,再判断这四个命题的真假.(6分)
(2)写出下列命题的非命题(8分)
p:方程x2-x-6=0的解一定是x=3;
q:四边相等的四边形是正方形;
r:不论m取何实数,方程x2+x+m=0必有实数根;
s:存在一个实数x,使得x2+x+1≤0;
18.(10分)用反证法证明:若p2+q2=2,则p+q≤2
19.(10分)已知a∈R,求使方程ax2+2x+1=0至少有一个负数根的充要条件。
20.(14分)已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根.若“p或q”为真,“p且q”为假,求m的取值范围.。