冀教版-数学-七年级上册-5.3 解一元一次方程(2)
- 格式:ppt
- 大小:512.00 KB
- 文档页数:15
冀教版数学七年级上册5.3《解一元一次方程》教学设计一. 教材分析冀教版数学七年级上册5.3《解一元一次方程》是学生在掌握了方程的基本概念和性质之后,进一步学习解一元一次方程的知识点。
本节课的主要内容是通过代数运算,求解一元一次方程的解。
教材中给出了详细的解题步骤,并通过例题和练习题,使学生能够熟练掌握解一元一次方程的方法。
二. 学情分析学生在学习本节课之前,已经掌握了方程的基本概念,能够进行简单的代数运算。
但部分学生对于解一元一次方程的步骤和原理可能还不够理解,需要通过本节课的学习和练习,进一步掌握解题方法。
三. 教学目标1.知识与技能:使学生掌握解一元一次方程的步骤和方法。
2.过程与方法:通过例题和练习题,培养学生解决实际问题的能力。
3.情感态度价值观:激发学生学习数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.重点:解一元一次方程的步骤和方法。
2.难点:对解题步骤的理解和应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过提出问题,引导学生思考;通过分析案例,使学生理解解题步骤;通过小组合作,培养学生解决问题的能力。
六. 教学准备1.教案:根据教材内容,编写详细的教学设计。
2.课件:制作课件,辅助教学。
3.练习题:准备一定数量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过提问方式,复习方程的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)讲解教材中的例题,引导学生思考解题步骤和方法。
通过讲解,使学生了解一元一次方程的解法。
3.操练(10分钟)让学生独立完成教材中的练习题,检测学生对解题方法的理解和掌握程度。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)针对学生练习中的共性问题,进行讲解和巩固。
通过讲解典型题目,使学生进一步掌握解题方法。
5.拓展(10分钟)提出一些实际问题,让学生运用所学知识解决。
通过小组合作,培养学生解决问题的能力。
6.小结(5分钟)对本节课的内容进行总结,使学生明确所学知识点和解题方法。
了解一元三次和一元四次方程的解法塔塔利亚发现的一元三次方程的解法一元三次方程的一般形式是 x3+sx2+tx+u=0,如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消去。
所以我们只要考虑形如x3=px+q的三次方程。
假设方程的解x可以写成x=a—b的形式,这里a和b是待定的参数。
代入方程,我们就有a3-3a2b+3ab2-b3=p(a—b)+q 整理得a3—b3 =(a—b)(p+3ab)+q由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时3ab+p=0.这样上式就成为 a3-b3=q,两边各乘以27a3,就得到 27a6—27a3b3=27qa3,由p=—3ab可知27a6 + p = 27qa3。
这是一个关于a3的二次方程,所以可以解得a。
进而可解出b和根x。
费拉里与一元四次方程的解法卡当在《重要的艺术》一书中公布了塔塔利亚发现的一元三次方程求根公式之后,塔塔利亚谴责卡当背信弃义,提出要与卡当进行辩论与比赛.这场辩论与比赛在米兰市的教堂进行,代表卡当出场的是卡当的学生费拉里.费拉里(Ferrari L.,1522~1565)出身贫苦,少年时代曾作为卡当的仆人。
卡当的数学研究引起了他对数学的热爱,当其数学才能被卡当发现后,卡当就收他作了学生.费拉里代替卡当与塔塔利亚辩论并比赛时,风华正茂,他不仅掌握了一元三次方程的解法,而且掌握了一元四次方程的解法,因而在辩论与比赛中取得了胜利,并由此当上了波伦亚大学的数学教授。
一元四次方程的求解方法,是受一元三次方程求解方法的启发而得到的.一元三次方程是在进行了巧妙的换元之后,把问题归结成了一元二次方程从而得解的.于是,如果能够巧妙地把一元四次方程转化为一元三次方程或一元二次方程,就可以利用已知的公式求解了。
费拉里的方法是这样的:方程两边同时除以最高次项的系数可得4320x bx cx dx e ++++= (1)移项可得432x bx cx dx e +=--- (2) 两边同时加上21()2bx ,可将(2)式左边配成完全平方,方程成为 222211()()24x bx b c x dx e +=--- (3) 在(3)式两边同时加上2211()24x bx y y ++ 可得 2211[()]22x bx y ++ 222111()()424b c y x by d x y e =-++-+- (4) (4)式中的y 是一个参数。
5.3 解一元一次方程第1课时 利用移项合并同类项解一元一次方程教 学 过 程设计意图1.创设情境,引入课题复习回顾1.等式的基本性质:性质1:等式两边同时____________________________, 所得结果仍是等式.性质2:等式两边同时____________________________,所得结果仍是等式.2.利用等式的基本性质解一元一次方程.师生活动:教师带领学生复习上节课的内容,学生举手回答,教师补充、指正.这节课我们就来学习求解一元一次方程.课题利用移项合并同类项解一元一次方程课型新授课教学内容 教材第163-165页的内容教学目标1.理解移项法则,学会解“ax +b =cx +d ”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想.2.能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值.教学重难点教学重点: 确定实际问题中的相等关系,建立形如ax +b =cx +d 的方程,利用移项与合并同类项解方程. 教学难点: 确定相等关系并列出一元一次方程,正确地进行移项并解出方程.2.类比探究,学习新知【探究】教师活动:提出问题,上一节课利用等式的性质解一元一次方程,具体的步骤是什么?请学生用此方法写出解方程5x=3x+8的具体步骤,发现了什么?能否将解题过程再简化一些呢?解方程:5x=3x+8.方程两边都减去3x ,得5x -3x=3x+8-3x , 即 2x=8. 方程的两边同除以2,得x=4. x=4就是方程5x=3+8的解.教师活动:我们可以借助下面框图所示的步骤来理解上面解方程的过程:师生活动:引导学生得出移项的概念,总结注意事项.【归纳总结】在解方程的过程中,等号的两边加上或减去方程中某一项的变形过程,相当于将这一项改变符号后,从等号的一边移到另一边.这种变形过程叫作移项. 【问题1】移项的依据是什么?【师生活动】学生思考后得出:移项的依据为等式的性质1. 【问题2】以上解方程中“移项”起了什么作用?【师生活动】学生思考回答,师生共同整理:通过移项,可以简化方程,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a 的形式.【师生活动】教师展示教材163页例题,教师引导学生完成,规范学生的解题步骤,培养学生良好的解题习惯.【例1】解下列方程: (1)5x-2=2x-10;(2)13231+=x x .在教学中运用探究式教学模式,使学生体验教学再创造的思维过程,培养学生的创造意识和科学精神.让学生掌握移项的原则和方法,体会移项的要领和简捷性.解:(1)移项,得5x-2x =-10+2. 合并同类项,得3x =-8. 将x 的系数化为1,得x =-83.(2)移项,得.13231=-x x .合并同类项,得131=-x .将x 的系数化为1,得x =-3.【归纳总结】一般地,对于形如ax=b (a ≠0,a,b 是已知数)的一元一次方程,方程两边同除以a ,得到方程的解是x=ba .3.学以致用,应用新知 【例1】解下列方程:(1)3x +7=32-2x ;(2)x -3=32x +1.解:(1)移项,得3x +2x =32-7. 合并同类项,得5x =25. 系数化为1,得x =5. (2)移项,得x -32x =1+3.合并同类项,得-12x =4.系数化为1,得x =-8.【例2】某制药厂制造一批药品,若用旧工艺,则废水排量要比环保限制的最大量还多200 t ;如用新工艺,则废水排量比环保限制的最大量少100 t .新、旧工艺的废水排量之比为2∶5,两种工艺的废水排量各是多少?解:设新工艺的废水排量为2xt ,则旧工艺的废水排量为5xt. 根据题意,得5x -200=2x +100. 移项,得5x -2x =100+200. 合并同类项,得3x =300.通过让学生解决生活中的实际问题,进一步理解合并同类项的概念及法则,培养计算能力,激发学习兴趣.系数化为1,得x=100.所以2x=200,5x=500.答:新工艺的废水排量为200t,旧工艺的废水排量为500t.4.随堂训练,巩固新知1.下列变形过程中,属于移项的是( )A.由3x=-1,得x=-1 3B.由x4=1,得x=4C.由3x+5=0,得3x=-5D.由-3x+3=0,得3-3x=0答案:C2.解下列方程:①4x=9+x;解:移项,得4x-x=9.合并同类项,得3x=9.系数化为1,得x=3.②8y-3=5y+3;解:移项,得8y-5y=3+3.合并同类项,得3y=6.系数化为1,得y=2.③4x+5=3x+3-2x.解:移项,得4x-3x+2x=-5+3. 合并同类项,得3x=-2.系数化为1,得x=-2 3 .3.A厂库存钢材为100吨,每月用去15吨;B厂库存钢材82吨,每月用去9吨.问经过多少个月后,两厂库存钢材相等?教师引导学生归纳本节课的知识要点和思想方法,使学生对列方程和解方程有一个整体全面的认识,同时也帮助学生养成良好的学习习惯.解:设经过x个月后,两厂库存钢材相等.依题意,得100-15x=82-9x,解得x=3.答:经过3个月后,两厂库存钢材相等.(4)由于疫情防控的需要,七(1)班统一购置一定数量的口罩.若每个学生发3个口罩,则多36个口罩;若给每个学生发4个口罩,则少8个口罩.请问该班有多少名学生?解:设该班有x名学生,依题意,得3x+36=4x-8,解得x=44.答:该班有44名学生.5.课堂小结,自我完善教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)移项的依据是什么?移项起到什么作用?移项时应该注意什么问题?(3)解ax+b=cx+d型方程的步骤是什么?(4)用方程来解决实际问题的关键是什么?6.布置作业课本P164练习1-3题,习题A组第1题.板书设计利用移项、合并同类项解一元一次方程提纲挈领,重点突出.教后反思本节课先利用等式的基本性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程.学生在移项过程中,大致会遇到以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;第一种情况在授课过程中强调不够,后面的两种情况出现最多,因此在教学设计当中应给学生进行针对性训练.引导学生正确地解方程.反思教学过程和教师表现,进一步优化操作流程和提升自身素质.。
5.3 解一元一次方程第2课时用去括号、去分母解一元一次方程课时目标1.掌握去括号、去分母解一元一次方程的方法,并能灵活运用解方程的一般步骤,提高学生的运算能力.2.通过解方程时去括号、去分母的过程,体会转化思想.3.通过归纳解一元一次方程的一般步骤,体会解方程的程序化思想方法.学习重点掌握用去括号、去分母的方法解一元一次方程.学习难点解方程时如何去括号、去分母.课时活动设计复习引入上节课我们学习了用移项解一元一次方程,请同学们回顾用移项解一元一次方程的步骤,并举手回答.设计意图:温故而知新,回忆上节课所学知识,为本节课的学习作铺垫.探究新知探究1去括号请学生尝试解方程6(2x-5)+20=4(1-2x).思考:与前面所解方程相比,这个方程多了什么?根据有理数混合运算法则,我们应该做什么?试着解一下.学生回答:多了括号,应先去括号.解:去括号,得12x-30+20=4-8x.移项,得12x+8x=4+30-20.合并同类项,得20x=14.将x 的系数化为1,得x =710.教师归纳:①去括号的实质是乘法对加法的分配律,去括号要先去小括号,再去中括号,最后去大括号,也可以由外向内;②当括号前是“-”时,去括号后,括号内的每一项都要改变符号.探究2 去分母请学生尝试解方程13(x -1)-16(x -2)=12(4-x ).让学生用自己的方法解这道题,再小组交流,明确方法.教师选取两名具有代表性的学生板演展示.学生1:去括号,得13x -13-16x +13=2-12x. 移项,得13x -16x +12x =2-13+13.合并同类项,得23x =2. 将x 的系数化为1,得x =3. 学生2:可将方程化为x -13-x -26=4−x 2.去分母,得2(x -1)-(x -2)=3(4-x ). 去括号,得2x -2-x +2=12-3x. 移项,得2x -x +3x =12+2-2. 合并同类项,得4x =12. 将x 的系数化为1,得x =3. 对于这种方程,用哪种方法较简单? 思考:如何去分母?去分母时应注意什么?每一项乘分母的最小公倍数,且当分子是多项式时需要加括号.教师引导学生总结归纳出解一元一次方程的步骤及每一步的依据和注意事项:设计意图:巩固所学解一元一次方程的一般步骤以及每一步经常出现的问题,让学生在解方程中避免出现类似错误,正确的解方程.培养学生合作交流的能力,体现学生的主体作用;培养学生语言表达能力,学会用数学的语言表达现实世界.典例精讲例1解方程:(1)x-12-2x-33=1;(2)1-2y-56=3−y4.解:(1)去分母,得3(x-1)-2(2x-3)=6.去括号,得3x-3-4x+6=6.移项,得3x-4x=6+3-6.合并同类项,得-x=3.将x的系数化为1,得x=-3.(2)去分母,得12-2(2y-5)=3(3-y).去括号,得12-4y+10=9-3y.移项,得-4y+3y=9-12-10.合并同类项,得-y=-13.将y的系数化为1,得y=13.例2 如图,在长方形ABCD 中,AB =12 cm,BC =9 cm,动点P 沿AB 边从点A 开始,向点B 以2 cm/s 的速度运动,动点Q 沿DA 边从点D 开始,向点A 以1 cm/s 的速度运动,P ,Q 同时开始运动,用t (s)表示移动的时间.(1)用含t 的代数式表示DQ = t cm;AQ = (9-t ) cm;AP = 2t cm;PB = (12-2t ) cm .(2)求当t 为何值时,AQ 长度的一半比PB 长度的13多1 cm . 解:(2)由题意,得9−t 2=12−2t 3+1,解得t =3.所以当t =3时,AQ 长度的一半比PB 长度的13多1 cm .设计意图:通过例题讲解,学生进一步理解去括号法则和去分母的方法,培养学生的知识应用能力,初步体会方程思想和数形结合的思想.巩固训练 1.把方程x 2-x -13=1去分母后,正确的是( C ) A .3x -2x -1=1 B .3x -2x -1=6 C .3x -2x +2=6D .3x -2x -2=62.下列变形正确的是(D) A .6x -5=3x +7变形,得6x -3x =-7+5 B .3x =2变形,得x =-23C .3(x -1)=2(x +3)变形,得3x -1=2x +6D .23x -2=12x +4变形,得4x -12=3x +24 3.解方程:(1)3(2x +1)-(3x -1)=7; (2)2−x 2=x -26.解:(1)去括号,得6x +3-3x +1=7. 移项,得6x -3x =7-3-1. 合并同类项,得3x =3. 将x 的系数化为1,得x =1.(2)去分母,得3(2-x)=x-2.去括号,得6-3x=x-2.移项,得-3x-x=-2-6.合并同类项,得-4x=-8.将x的系数化为1,得x=2.设计意图:通过练习,进一步巩固本节课所学知识,查漏补缺,培养学生自我纠错能力.课堂小结解一元一次方程的步骤及每一步的依据和注意事项:设计意图:通过表格的形式让学生归纳解一元一次方程的步骤,并明确每一步的依据和注意事项,既可以使学生牢固地掌握本节内容又能培养学生的归纳总结能力和缜密的计算能力.1.教材第167,168页习题A组第1,2题,B组第3,4题.第2课时用去括号、去分母解一元一次方程1.解带括号的一元一次方程.2.解含有分母的一元一次方程.3.解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项(化为ax=b的形式,其中a,b是已知数);(5)将未知数的系数化为1(化为x=a的形式).教学反思。