第四章 线性判别函数
19
矢量与矩阵的乘法
设W为N维列矢量,A为一个N*M的矩阵:
N
w
ia
i1
i1
N
W
TA
w ia i2
i1
N
i1
w
ia iN
结果是一个N维列矢量。
第四章 线性判别函数
20
正交
设W和X为N维列矢量,如果W与X的内积 等于零:
WT X 0
则称W与X正交,也称W垂直于X。
设定判别函数形式,用样本集确定判别函数 的参数。
定义准则函数,表达分类器应满足的要求。
这些准则的“最优〞并不一定与错误率最小 相一致:次优分类器。
实例:正态分布最小错误率贝叶斯分类器在
特殊情况下,是线性判别函数g(x)=wTx〔决策
面是超平面)。那选么择最我佳们准则能否决策基规则于:样本直接
确定w? 训练样本集
答: 样本向量:x = (x1, x2, x3, x4, x5)T 权向量:w = (55, 68, 32, 16, 26)T, w0=10 增广样本向量:y = (1, x1, x2, x3, x4, x5)T 增广权向量:a = (10, 55, 68, 32, 16, 26)T
第四章 线性判别函数
模式识别与神经网络 Pattern Recognition And neural network
第四章 线性判别函数
Table of Contents
第四章 线性判别函数
2
4.1 引言
分类器 功能结构
基于样本的Bayes分类 器:通过估计类条件 概率密度函数,设计 相应的判别函数
训练 样本集
样本分布的 统计特征: 概率密度函数