多元统计分析课后习题解答_第四章知识讲解
- 格式:doc
- 大小:568.50 KB
- 文档页数:12
多元统计分析课后习题解答_第四章(共12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章判别分析简述欧几里得距离与马氏距离的区别和联系。
答:设p维欧几里得空间中的两点X=和Y=。
则欧几里得距离为。
欧几里得距离的局限有①在多元数据分析中,其度量不合理。
②会受到实际问题中量纲的影响。
设X,Y是来自均值向量为,协方差为的总体G中的p维样本。
则马氏距离为D(X,Y)=。
当即单位阵时,D(X,Y)==即欧几里得距离。
因此,在一定程度上,欧几里得距离是马氏距离的特殊情况,马氏距离是欧几里得距离的推广。
试述判别分析的实质。
答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。
设R1,R2,…,Rk 是p 维空间R p 的k 个子集,如果它们互不相交,且它们的和集为,则称为的一个划分。
判别分析问题实质上就是在某种意义上,以最优的性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。
简述距离判别法的基本思想和方法。
答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。
其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。
①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是1和 2,对于一个新的样品X ,要判断它来自哪个总体。
计算新样品X 到两个总体的马氏距离D 2(X ,G 1)和D 2(X ,G 2),则X ,D2(X ,G1)D 2(X ,G 2)X,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,2212(,)(,)D G D G -X X111122111111111222*********()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为X ,W(X)X ,W(X)<0②多个总体的判别问题。
第四章4-1 设⎪⎩⎪⎨⎧++=+-=+=,2,2,332211εεεb a y b a y a y ).,0(~323321I N σεεεε⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=(1)试求参数b a ,的最小二乘估计;(2)试导出检验b a H =:0的似然比统计量,并指出当假设成立时,这个统计量是分布是什么?解:(1)由题意可知.,,,211201321321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=εεεεβ b a y y y Y C 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==--321'1''1'211201************)(ˆy y y Y C C C β .ˆˆ)2(51)2(6132321⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++b ay y y y y (2)由题意知,检验b a H =:0的似然比统计量为23202ˆ⎪⎪⎭⎫⎝⎛=σσλ 其中,])ˆ2ˆ()ˆˆ2()ˆ[(31ˆ2322212b a y b a y a y --++-+-=σ。
当0H 成立时,设0a b a ==,则⎪⎩⎪⎨⎧+=+=+=,3,,303202101εεεa y a y a y ,311⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=C 可得,ˆ)3y (111311311311)(ˆ0321321'1''1'a y y y y y Y C C C =++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==--β ],)ˆ3()ˆ()ˆ[(31ˆ20320220120a y a y ay -+-+-=σ 因此,当假设0H 成立时,与似然比统计量λ等价的F 统计量及其分布为).1,1(~ˆˆˆ2202F F σσσ-=第五章5-1 已知总体)1(=m G i 的分布为)2,1)(,(2)(=i N i i σμ,按距离判别准则为(不妨设21)2()1(,σσμμ<>)⎩⎨⎧≥≤∈<<∈,,,,**2**1μμμμx x G x x G x 或 若 若 其中 .,121221*211221*σσσμσμμσσσμσμμ--=++=)()()()( 试求错判概率)1|2(P 和)2|1(P 。
多元统计分析陈钰芬课后答案第1章多元正态分布1、在数据处理时,为什么通常要进行标准化处理?第1章多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
多元统计分析课后题第四章 回归分析1、设河流的一个断面的年径流量为y ,该断面的上游流域的年平均降水量为x1,年平均饱和差为x2,现共有14年的观测记录:时间x1x2y 时间x1x2y17201.8029085792.221512553 2.6713595152.411313575 1.75234105763.031064548 2.07182115471.832005572 2.49145125681.902246453 3.5969137201.982717540 1.88205147002.90130(1)试求y 关于x 1、x 2的二元线性回归方程;(2)对回归方程和每一个回归系数的显著性做检验;(3)求出每一个回归系数的置信水平为0.95的置信区间;(4)求出回归方程的复相关系数;(5)设某年x 1=600,x 2=2.50,求E(y)的点估计及置信水平为0.95的置信区间。
解:利用以上数据表拟合线性回归模型.22110εβββ+++=x x y 点选SPSS 视窗中的分析回归分析线性…,再将y 选入因变量的方框中,同时→→将x1和x2选入自变量的方框中,再在“统计”中选择估计、模型拟合、R 平方变化、描述、部分和偏相关、Durbin-Watson 选项,最后点击“OK ”按钮即可作线性回归分析,输出结果如下:Regression变量的样本均值和标准差:变量间的简单相关系数:这里给出了回归方程的样本决定系数和P值以及DW值:下面的框图是方差分析表,从中可以看出,y关于x1和x2的线性回归方程通过了显著性检验,均方残差为554.963,F统计量值为42.155,P值为0.000,回归方程在0.000的统计意义上是显著的。
上面的框图给出了非标准化和标准化的回归方程,以及回归系数的t 统计量检验结果。
从中我们可以看出,非标准化的回归方程为:(1)21x 647.87292.0875.209-+=x y(2)回归系数、均通过了显著性检验。
多元统计分析讲义(第四章)(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《多元统计分析》Multivariate Statistical Analysis主讲:统计学院许启发()统计学院应用统计学教研室School of Statistics2004年9月第三章主成分分析【教学目的】1.让学生了解主成分分析的背景、基本思想;2.掌握主成分分析的基本原理与方法;3.掌握主成分分析的操作步骤和基本过程;4.学会应用主成分分析解决实际问题。
【教学重点】1.主成分分析的几何意义;2.主成分分析的基本原理。
§1 概述一、什么是主成分分析1.研究背景在实际问题的研究中,为了全面分析问题,往往涉及众多有关的变量。
但是,变量太多不但会增加计算的复杂性,而且也给合理地分析问题和解释问题带来困难。
一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同。
实际上,在很多情况下,众多变量间有一定的相关关系,人们希望利用这种相关性对这些变量加以“改造”,用为数较少的新变量来反映原变量所提供的大部分信息,通过对新变量的分析达到解决问题的目的。
主成分分析及典型相关分析便是在这种降维的思维下产生的处理高维数据的统计方法。
本章主要介绍主成分分析。
主成分分析的基本方法是通过构造原变量的适当的线性组合,以产生一系列互不相关的新变量,从中选出少数几个新变量并使它们含有尽可能多的原变量带有的信息,从而使得用这几个新变量代替原变量分析问题和解决问题成为可能。
当研究的问题确定之后,变量中所含“信息”的大小通常用该变量的方差或样本方差来度量。
概括地说,主成分分析(principal component analysis)就是一种通过降维技术把多个指标约化为少数几个综合指标的综合统计分析方法,而这些综合指标能够反映原始指标的绝大部分信息,它们通常表现为原始几个指标的线性组合。
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
第四章判别分析习题4.8(1)根据数据建立贝叶斯判别函数,并根据此判别函数对原样本进行回判。
(2)现有一新品牌的饮料在该超市试销,其销售价格为3.0,顾客对其口味评分为8,信任度评分平均为5,试预测该饮料的销售情况。
将数据导入SPSS,分析得到以下结果:1.典型判别函数的特征函数的特征值表表1-1 特征值表表1-1所示是典型判别函数的特征值表,只有两个判别函数,所以特征值只有2个。
函数1的特征值为17.791,函数2的特征值为0.720,判别函数的特征值越大,说明函数越具有区别判断力。
函数1方差的累积贡献率高达96.1%,且典型相关系数为0.973,而函数2方差的贡献率仅为3.9%,典型相关系数为0.647。
由此,说明函数1的区别判断力比函数2的强,函数1更具有区别判断力。
2.Wilks检验结果表1-2 Wilks 的Lambda上表中判别函数1和判别函数2的Wilks’Lambda值为0.031,判别函数2的Wilks’Lambda值为0.581。
“1到2”表示两个判别函数的平均数在三个类间的差异情况,P值=0.002<0.05表示差异达到显著水平“2”表示在排除了第一个判别函数后,第二个判别函数在三个组别间的差异情况,P值=0.197>0.05表示判别函数2未达到显著水平。
3.建立贝叶斯判别函数表1-3 贝叶斯判别法函数系数上表为贝叶斯判别函数的系数矩阵,用数学表达式表示各类的贝叶斯判别函数为:第一组:F1=-81.843-11.689X1+12.97X2+16.761X3第二组:F2=-94.536-10.707X1+13.361X2+17.086X3第三组:F3=-17.499-2.194X1+4.960X2+6.447X3将新品牌饮料样品的自变量值分别代入上述三个贝叶斯判别函数,得到三个函数值为:F1=65.271,F2=65.661,F3=47.884比较三个值,可以看出F2=65.661最大,据此得出新品牌饮料样品应该属于第二组,即该饮料的销售情况为平销。
第四章 判别分析4、1 简述欧几里得距离与马氏距离得区别与联系。
答: 设p 维欧几里得空间中得两点X =与Y =。
则欧几里得距离为。
欧几里得距离得局限有①在多元数据分析中,其度量不合理。
②会受到实际问题中量纲得影响。
设X,Y 就是来自均值向量为,协方差为得总体G 中得p 维样本。
则马氏距离为D(X,Y)=。
当即单位阵时,D(X,Y)==即欧几里得距离。
因此,在一定程度上,欧几里得距离就是马氏距离得特殊情况,马氏距离就是欧几里得距离得推广。
4、2 试述判别分析得实质。
答:判别分析就就是希望利用已经测得得变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别得样本点尽可能地区别开来。
设R1,R2,…,Rk 就是p 维空间R p 得k 个子集,如果它们互不相交,且它们得与集为,则称为得一个划分。
判别分析问题实质上就就是在某种意义上,以最优得性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。
4、3 简述距离判别法得基本思想与方法。
答:距离判别问题分为①两个总体得距离判别问题与②多个总体得判别问题。
其基本思想都就是分别计算样本与各个总体得距离(马氏距离),将距离近得判别为一类。
①两个总体得距离判别问题设有协方差矩阵∑相等得两个总体G 1与G 2,其均值分别就是μ1与μ 2,对于一个新得样品X ,要判断它来自哪个总体。
计算新样品X 到两个总体得马氏距离D 2(X,G 1)与D 2(X,G 2),则X ,D 2(X ,G 1)D 2(X ,G 2)X ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,111122111111111222111211122()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ记 则判别规则为X ,W(X) X ,W(X)<0②多个总体得判别问题。
多元统计分析课后习题答案多元统计分析课后习题答案在学习多元统计分析时,课后习题是巩固所学知识的重要环节。
通过解答习题,我们可以进一步理解和应用统计学的概念和方法。
下面将给出一些多元统计分析课后习题的答案,希望能对大家的学习有所帮助。
1. 在多元统计分析中,什么是协方差矩阵?如何计算协方差矩阵?答:协方差矩阵是用来衡量多个随机变量之间的线性关系的矩阵。
它是一个对称矩阵,对角线上的元素是各个变量的方差,非对角线上的元素是两个变量之间的协方差。
计算协方差矩阵的方法是,首先计算每个变量的平均值,然后计算每个变量与其他变量的协方差。
最后将这些协方差按照矩阵的形式排列,即得到协方差矩阵。
2. 什么是主成分分析?主成分分析的步骤是什么?答:主成分分析是一种用于降维的统计方法,它可以将多个相关变量转化为一组无关的主成分。
主成分分析的目标是找到能够解释原始变量大部分方差的少数几个主成分。
主成分分析的步骤如下:(1) 标准化数据:将原始数据进行标准化处理,使得每个变量的均值为0,标准差为1。
(2) 计算协方差矩阵:根据标准化后的数据计算协方差矩阵。
(3) 计算特征值和特征向量:求解协方差矩阵的特征值和特征向量。
(4) 选择主成分:根据特征值的大小选择主成分,通常选择特征值较大的前几个主成分。
(5) 构造主成分:将选择的主成分与原始数据进行线性组合,得到新的主成分。
3. 什么是判别分析?判别分析的步骤是什么?答:判别分析是一种用于分类的统计方法,它通过寻找最佳的分类边界,将样本分为不同的类别。
判别分析的目标是找到能够最大程度地区分不同类别的线性组合。
判别分析的步骤如下:(1) 收集样本数据:首先收集包含已知类别的样本数据。
(2) 计算类均值向量:根据样本数据计算每个类别的均值向量。
(3) 计算类内离散度矩阵:根据样本数据计算每个类别的类内离散度矩阵。
(4) 计算类间离散度矩阵:根据样本数据计算类间离散度矩阵。
(5) 计算投影向量:根据类内离散度矩阵和类间离散度矩阵计算投影向量。
4.8某超市经销十种品牌的饮料,其中有四种畅销,三种滞销,三种平销。
下表是这十 种品牌饮料的销售价格(元)和顾客对各种饮料的口味评分、信任度评分的平均数。
销售情况产品序号 销售价格 口味评分信任度评分2.2 8 畅销2.53.07 93.265 2.8 76 平销6 3.5 87 7 4.89 88 1.73 滞销9 2.2 4102.74⑴ 根据数据建立贝叶斯判别函数,并根据此判别函数对原样本进行回判。
⑵现有一新品牌的饮料在该超市试销,其销售价格为 3.0,顾客对其口味的评分平均为8,信任评分平均为5,试预测该饮料的销售情况。
解:贝叶斯判别法,由SPS 列得表1和表2表1Fisher 的线性判别式函数如表1所示,销售情况栏中的每一列表示样品判入相应列的贝叶斯判别函数系数。
则各类的贝叶斯判别式函数如下:第一组: 第二组: 第三组: 将样品的自变量代入上述三个贝叶斯判别函数,得到三个函数值,分别为:F1=65.271 ,F2=65.661 ,F3=47.884比较三个值,可以看出F2=65.661最大,据此可以得出该待判样品应该属于第 2组。
则改新品牌的饮料在该超市试销的销售情况是贫销。
表2F 仁-81.843 - 11.689X1 + 12.297X2 + 16.761X3F2= - 94.536 - 10.707X1 + 13.361X2 +初 1 1 1 .513 2 .932 1.337 2.766 -1.626 始2 1 1 .995 2 .829 .011 2.080 -.7253 1 1 .531 2 .974 1.268 1.153 -1.5284 1 **2 .734 2 .714 .619 1.948 .7915 2 **1.535 2 .633 1.249 1.394 .1766 2 2 .951 2 .822 .100 2.954 .7217 2 2 .342 2 .985 2.148 3.816 1.9118 3 3 .260 2 1.000 2.695 -4.112 -.9619 3 3 .538 2 1.000 1.239 -6.386 .54810 3 3 .811 2 1.000 .418 -5.613 .69311 未分组的2.1652.597 3.598 .825 .969**.错误分类的案例由表2可得,产品4和产品5实验组和预测组数据不同,且预测组数据上带有**,其中**表示错误分类的案例。
第四章判别分析4.1 简述欧几里得距离与马氏距离的区别和联系。
答:设p维欧几里得空间中的两点X=和Y=。
则欧几里得距离为。
欧几里得距离的局限有①在多元数据分析中,其度量不合理。
②会受到实际问题中量纲的影响。
设X,Y是来自均值向量为,协方差为的总体G中的p维样本。
则马氏距离为D(X,Y)=。
当即单位阵时,D(X,Y)==即欧几里得距离。
因此,在一定程度上,欧几里得距离是马氏距离的特殊情况,马氏距离是欧几里得距离的推广。
4.2 试述判别分析的实质。
答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。
设R1,R2,…,Rk 是p 维空间R p 的k 个子集,如果它们互不相交,且它们的和集为,则称为的一个划分。
判别分析问题实质上就是在某种意义上,以最优的性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。
4.3 简述距离判别法的基本思想和方法。
答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。
其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。
①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是μ1和μ 2,对于一个新的样品X ,要判断它来自哪个总体。
计算新样品X 到两个总体的马氏距离D 2(X ,G 1)和D 2(X ,G 2),则X,D 2(X ,G 1)D 2(X ,G 2)X,D 2(X ,G 1)> D 2(X ,G 2,具体分析,2212(,)(,)D G D G -X X111122111111111222*********()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为X,W(X)X,W(X)<0②多个总体的判别问题。
设有k 个总体k G G G ,,,21Λ,其均值和协方差矩阵分别是k μμμ,,,21Λ和k ΣΣΣ,,,21Λ,且ΣΣΣΣ====k Λ21。
计算样本到每个总体的马氏距离,到哪个总体的距离最小就属于哪个总体。
具体分析,21(,)()()D G ααα-'=--X X μΣX μ111122()C ααααα----'''=-+''=-+X ΣX μΣX μΣμX ΣX I X取ααμΣI 1-=,αααμΣμ121-'-=C ,k ,,2,1Λ=α。
可以取线性判别函数为()W C ααα'=+X I X , k ,,2,1Λ=α 相应的判别规则为i G ∈X 若 1()max()i kW C ααα≤≤'=+X I X4.4 简述贝叶斯判别法的基本思想和方法。
基本思想:设k 个总体k G G G ,,,21Λ,其各自的分布密度函数)(,),(),(21x x x k f f f Λ,假设k 个总体各自出现的概率分别为k q q q ,,,21Λ,0≥i q ,11=∑=ki iq。
设将本来属于i G 总体的样品错判到总体j G 时造成的损失为)|(i j C ,k j i ,,2,1,Λ=。
设k 个总体k G G G ,,,21Λ相应的p 维样本空间为 ),,,(21k R R R R Λ=。
在规则R 下,将属于i G 的样品错判为j G 的概率为x x d f R i j P jR i )(),|(⎰= j i kj i ≠=,,2,1,Λ则这种判别规则下样品错判后所造成的平均损失为∑==kj R i j P i j C R i r 1)],|()|([)|( k i ,,2,1Λ=则用规则R 来进行判别所造成的总平均损失为∑==ki i R i r q R g 1),()(∑∑===k i kj i R i j P i j C q 11),|()|(贝叶斯判别法则,就是要选择一种划分k R R R ,,,21Λ,使总平均损失)(R g 达到极小。
基本方法:∑∑===k i kj i R i j P i j C q R g 11),|()|()(x x d f i j C q ki kj R i i j∑∑⎰===11)()|(∑⎰∑===k j R ki i i jd f i j C q 11))()|((x x令1(|)()()k iiji q C j i f h ==∑x x ,则 ∑⎰==kj R j jd h R g 1)()(x x若有另一划分),,,(**2*1*kR R R R Λ=,∑⎰==kj R j jd h R g 1**)()(x x则在两种划分下的总平均损失之差为∑∑⎰==⋂-=-k i kj R R j i ji d h h R g R g 11**)]()([)()(x x x因为在i R 上)()(x x j i h h ≤对一切j 成立,故上式小于或等于零,是贝叶斯判别的解。
从而得到的划分),,,(21k R R R R Λ=为1{|()min ()}i i j j kR h h ≤≤==x x x k i ,,2,1Λ=4.5 简述费希尔判别法的基本思想和方法。
答:基本思想:从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数1122()p p U u X u X u X '=+++=X u X L系数),,,(21'=p u u u Λu 可使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出()U X 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。
答:① 费希尔判别与距离判别对判别变量的分布类型无要求。
二者只是要求有各类母体的两阶矩存在。
而贝叶斯判别必须知道判别变量的分布类型。
因此前两者相对来说较为简单。
② 当k=2时,若则费希尔判别与距离判别等价。
当判别变量服从正态分布时,二者与贝叶斯判别也等价。
③ 当时,费希尔判别用作为共同协差阵,实际看成等协差阵,此与距离判别、贝叶斯判别不同。
④ 距离判别可以看为贝叶斯判别的特殊情形。
贝叶斯判别的判别规则是 X,W(X)X,W(X)<lnd距离判别的判别规则是X,W(X)X,W(X)<0二者的区别在于阈值点。
当21q q =,)1|2()2|1(C C =时,1=d,0ln =d 。
二者完全相同。
4.7 设有两个二元总体和,从中分别抽取样本计算得到,,假设,试用距离判别法建立判别函数和判别规则。
样品X=(6,0)’应属于哪个总体?解:=,= ,==即样品X属于总体4.8 某超市经销十种品牌的饮料,其中有四种畅销,三种滞销,三种平销。
下表是这十种品牌饮料的销售价格(元)和顾客对各种饮料的口味评分、信任度评分的平均数。
销售情况产品序号销售价格口味评分信任度评分畅销1 2.2 5 82 2.5 6 73 3.0 3 94 3.2 8 6平销5 2.8 7 66 3.5 8 77 4.8 9 8滞销8 1.7 3 49 2.2 4 210 2.7 4 3⑴根据数据建立贝叶斯判别函数,并根据此判别函数对原样本进行回判。
⑵现有一新品牌的饮料在该超市试销,其销售价格为3.0,顾客对其口味的评分平均为8,信任评分平均为5,试预测该饮料的销售情况。
解:增加group变量,令畅销、平销、滞销分别为group1、2、3;销售价格为X1,口味评分为X2,信任度评分为X3,用spss 解题的步骤如下:1.在SPSS窗口中选择Analyze→Classify→Discriminate,调出判别分析主界面,将左边的变量列表中的“group”变量选入分组变量中,将X1、X2、X3变量选入自变量中,并选择Enter independents together单选按钮,即使用所有自变量进行判别分析。
2.点击Define Range按钮,定义分组变量的取值范围。
本例中分类变量的范围为1到3,所以在最小值和最大值中分别输入1和3。
单击Continue按钮,返回主界面。
如图4.1图4.1 判别分析主界面3.单击Statistics…按钮,指定输出的描述统计量和判别函数系数。
选中FunctionCoefficients栏中的Fisher’s:给出Bayes判别函数的系数。
(注意:这个选项不是要给出Fisher判别函数的系数。
这个复选框的名字之所以为Fisher’s,是因为按判别函数值最大的一组进行归类这种思想是由Fisher提出来的。
这里极易混淆,请读者注意辨别。
)如图4.2。
单击Continue按钮,返回主界面。
图4.2 statistics子对话框4. 单击Classify…按钮,弹出classification 子对话框,选中Display 选项栏中的Summary table 复选框,即要求输出错判矩阵,以便实现题中对原样本进行回判的要求。
如图4.3。
图4.3 classification 对话框5. 返回判别分析主界面,单击OK 按钮,运行判别分析过程。
1) 根据判别分析的结果建立Bayes 判别函数:Bayes 判别函数的系数见表4.1。
表中每一列表示样本判入相应类的Bayes 判别函数系数。
由此可建立判别函数如下:Group1: 3761.162297.121689.11843.811X X X Y ++--= Group2: 3086.172361.131707.10536.942X X X Y ++--=Group3: 3447.62960.41194.2449.173X X X Y ++--=将各样品的自变量值代入上述三个Bayes 判别函数,得到三个函数值。
比较这三个函数值,哪个函数值比较大就可以判断该样品判入哪一类。
Classification Function Coefficientsgroup1 2 3 x1 -11.689 -10.707 -2.194 x2 12.297 13.361 4.960 x3 16.761 17.086 6.447 (Constant)-81.843-94.536-17.449Fisher's linear discriminant functions表4.1 Bayes 判别函数系数根据此判别函数对样本进行回判,结果如表4.2。