高二数学复数的四则运算(学生版)
- 格式:doc
- 大小:287.36 KB
- 文档页数:9
教学设计:2024秋季人教A版高中数学必修第二册第七章复数《复数的四则运算》一、教学目标(核心素养)1.数学抽象:学生能够理解复数四则运算的定义,抽象出复数运算与实数运算的区别与联系。
2.逻辑推理:通过复数四则运算的推导和应用,培养学生的逻辑推理能力,理解复数运算的代数和几何意义。
3.数学运算:熟练掌握复数四则运算(加、减、乘、除)的法则,提高数学运算能力。
4.数学建模:初步了解复数在解决实际问题中的应用,培养学生的数学建模意识。
二、教学重点•复数四则运算的法则及其推导过程。
•复数乘法和除法的运算技巧及注意事项。
三、教学难点•理解复数乘法中“模相乘、辐角相加”的原理及其在运算中的应用。
•掌握复数除法运算中共轭复数的使用及结果的化简。
四、教学资源•多媒体课件(包含复数四则运算的示例、动画演示、练习题等)•黑板与粉笔(用于板书关键步骤和结论)•教材及配套习题册•复数计算器(可选,用于学生实践运算)五、教学方法•讲授法:系统介绍复数四则运算的定义、法则及运算技巧。
•演示法:利用多媒体课件演示复数四则运算的过程,帮助学生直观理解。
•练习法:通过例题和习题,加强学生对复数四则运算的掌握。
•讨论法:组织学生讨论复数四则运算在实际问题中的应用,加深对复数运算的理解。
六、教学过程1. 导入新课•复习旧知:回顾复数的概念、代数表示及三角表示,为复数四则运算做铺垫。
•情境引入:通过物理、工程或经济等领域中涉及复数运算的实例,激发学生兴趣,引入复数四则运算的学习。
2. 新课教学•复数加法与减法:•简述复数加法与减法的定义,强调实部与实部相加(减)、虚部与虚部相加(减)的规则。
•通过例题演示复数加法与减法的运算过程,引导学生总结运算规律。
•复数乘法:•详细介绍复数乘法的运算法则,特别是“模相乘、辐角相加”的原理及其在代数表示下的应用。
•通过例题演示复数乘法的运算过程,注意运算结果的化简和辐角的处理。
•强调复数乘法与实数乘法的区别,以及复数乘法在几何变换中的意义。
学科教师辅导讲义
R - D {}0
取什么值时,复平面内表示复数815)z m -+)位于第一、二象限?
2007i +那么10050z z +
例12、证明:在复数范围内,方程255||(1)(1)2i z i z i z i
-+--+=
+(i 为虚数单位)无解.
【课堂总结】
1.在复数代数形式的四则运算中,加减乘运算按多项式运算法则进行,除法则需分母实数化,必须准确熟练地掌握.
2.记住一些常用的结果,如ω,i 的有关性质等可简化运算步骤提高运算速度.
3.复数的代数运算与实数有密切联系但又有区别,在运算中要特别注意实数范围内的运算法则在复数范围内是否适用.
【课后练习】
一、选择题
1.若复数i
i a 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 ( ) A 、-6 B 、13 C.
32 D.13 2.定义运算bc ad d c b
a -=,,,则符合条件01121=+-+i i i
z ,,的复数_
z 对应的点在( ) A .第一象限; B .第二象限; C .第三象限; D .第四象限;
3.若复数()()22ai i --是纯虚数(i 是虚数单位),则实数a =( )
A.-4;
B.4;
C.-1;
D.1;
4.复数i i ⋅--2123
=( )
A .-I
B .I
C . 22-i
D .-22+i
6.若复数z ai z i z 且复数满足,1)1(+=-在复平面上对应的点位于第二象限,则实数a 的取值范围是( )
A .1>a
B .11<<-a
C .1-<a
D .11>-<a a 或
z为纯虚数,则实数
2
D.0
的实部和虚部相等,则实数
(
3
(0,]
3
)∪(0,。