上海高中数学-复数讲义
- 格式:pdf
- 大小:229.83 KB
- 文档页数:5
上海高考数学复数知识点复数,作为高考数学中的一个重要概念,广泛应用于各个数学分支中。
对于上海高考来说,对复数的理解和应用是考生必备的数学知识之一。
本文将全面介绍上海高考数学中的复数知识点,帮助考生更好地掌握这一内容。
一、复数的引入1. 实数的不完备性在高中数学中,我们知道实数是由有理数与无理数构成的。
然而,即便是把这两类数合并在一起,仍然有些问题无法解决。
例如,方程x²=-1在实数范围内无解,这就引出了复数的概念。
2. 复数的定义复数由实部和虚部构成,形如a+bi。
其中,a为实数部分,bi为虚数部分,i为虚数单位,满足i²=-1。
复数可以用平面上的点表示,实部对应的是点在实轴上的投影,虚部对应的是点在虚轴上的投影。
二、复数的运算1. 加法和减法复数的加法就是实部相加,虚部相加。
例如,(3+2i)+(5+4i)=8+6i。
减法同理,即实部相减,虚部相减。
2. 乘法和除法复数的乘法则是根据分配律展开进行计算。
例如,(a+bi)(c+di)=(ac-bd)+(ad+bc)i。
复数的除法可以通过有理化的方法进行,具体推导与实数的除法类似。
3. 共轭复数一个复数的共轭复数由实部保持不变,虚部变号得到。
例如,对于复数a+bi,它的共轭复数为a-bi。
共轭复数的应用十分广泛,例如求复数的模、求复数的平方等等。
三、复数的性质和定理1. 关于复数的模复数的模是指复数到原点的距离,记作|z|。
对于复数a+bi,它的模为√(a²+b²)。
复数的模具有非负性、三角不等式和模的性质等特点。
2. 欧拉公式欧拉公式是数学中一条重要的公式,被广泛应用于各个领域。
它的表达形式为e^(ix)=cos(x)+isin(x),其中e表示自然对数的底,i为虚数单位,x为实数。
3. 复数根的性质对于复数z的n次方根,一共有n个解。
这些解在平面上均匀分布在一个圆周上,称为复数单位圆。
复数根的求解可以利用欧拉公式和三角函数理论来处理。
复数一、知识点梳理: 1、i 的周期性:44n+14n+24n+34ni =1,所以,i =i, i =-1, i =-i, i =1 n Z4n 4n 1 4n 2 4n 3IIIiC a bi | a,b R 叫做复数集。
3、 复数相等:a bi cdi a c 且b=d ; a bi 0 a 0且b=0实数(b=0)4、 复数的分类:复数Za bi 七—一般虚数(b 0,a 0)虚数(b 0)纯虚数(b 0,a 0)虚数不能比较大小,只有等与不等。
即使是3 i,6 2i 也没有大小。
uu uu r ------- r5、 复数的模:若向量OZ 表示复数 乙则称OZ 的模r 为复数z 的模,z |a bi | ,a 2 b 2 ;积或商的模可利用模的性质(1) z 1 L z nZ 1 Z 2 L Z n ,(2)引Z 2Z 2Z 26、 复数的几何意义:复数z a bi a,b R一一对应复平面内的点Z(a,b)一一对应uu复数Z a bi a,b R平面向量OZ , 7y 轴叫做虚轴.,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数&复数代数形式的加减运算 复数 Z 1 与 Z 2 的和:z 1+z 2=(a +bi )+( c +di )=( a +c )+( b +d ) i . a, b, c, d R 复数 Z 1 与 Z 2 的差:z 1- z 2=( a +bi )-( c +di )=( a - c )+( b - d ) i . a, b, c, d R 复数的加法运算满足交换律和结合律数加法的几何意义: 复数乙=a +bi ,Z 2=c +di a,b,c,d R ; OZ = OZ 1 +OZ 2 =(a ,b )+( c ,d )=( a +c , b +d ) = (a +c )+( b +d ) iuu u uuur ujur复数减法的几何意义:复数Z 1-Z 2的差(a - c )+( b - d )i 对应•由于Z 2Z 1 OZ 1 OZ 2,两个复数的差Z — Z 1与连接这两个向量终点并指向被减数的向量对应 9.特别地,z ABz B —Z A , z AB AB z B z A 为两点间的距离。
上海市高二下学期复数的概念及其运算【学习要点】1.把形如)(R b a bi a ∈+、的数叫做双数,用字母z 表示,即=z )(R b a bi a ∈+、, 其中a 叫做双数z 的实部,记作z Re ,b 叫做双数z 的虚部,记作z Im ,i 叫 做虚数单位,规则:12-=i . 双数全体所组成的集合叫做双数集,用字母C 表 示. 双数包括实数和虚数,规则12-=i .2.双数bi a z +=,事先0=b ,双数z 为实数;事先0≠b ,双数z 为虚数;当0=a 且0≠b 时,z 叫做纯虚数.3.假设两个双数bi a z +=1和di c z +=2相等,那么c a =且d b =.4.共轭双数:实部相等虚部相反的两个双数互为共轭双数,双数z 的共轭双数用 z 来表示,假定bi a z +=,那么bi a z -=.5.关于双数bi a z +=,我们把22b a +叫做双数z 的模.记z ,即=z 22b a +. 特别地,z z =.6.双数加减法:设bi a z +=1,di c z +=2,那么i d b c a z z )()(21±+±=±.7.双数乘除法:设bi a z +=1,di c z +=2,那么i ad bc bd ac z z )()(21++-=⋅;8.双数的乘方:n m n m z z z +=⋅,mn n m z z =)(,n n n z z z z 2121)(⋅=⋅.我们规则10=z ,)0(1≠=-z zz n n ,特别地,14=n i ;i i n =+14;124-=+n i ;i i n -=+34.9.双数的开方:它是乘方的逆运算,设bi a z +=1,di c z +=2,且满足21z z n=,即di c bi a n+=+)(,那么称1z 是2z 的一个n 次方根. 特别地,i ±是1-的一个立方根,1的立方根是1、i 2321±-. 10.双数的模的运算性质:①2121z z z z ⋅=⋅;②)0(22121≠=z z z z z ;11.共轭双数运算性质:①2121z z z z +=+,2121z z z z -=-;②)0(22121≠=⎪⎪⎭⎫ ⎝⎛z z z z z ;【例题解说与训练】例1.双数i 43+,i 2-,i ,2π,0,i 2.(1)指出它们哪些是实数,哪些是虚数,哪些是纯虚数? (2)求出上述双数的模及它们的共轭双数. 〖变式训练1〗1.请说出双数i i 31,5,32--+的实部和虚部.2.双数 72+,618.0,i 72,0,i ,2i ,85+i ,i 293-中为实数的有 ,为虚数的有 ,为纯虚数有 .3.命题:①假定C z z ∈21,,且21z z =,那么21z z ±=;②假定R b a ∈,,且b a >, 那么bi ai >;③与自身共轭的双数一定是实数.其中正确的序号为 .例2.实数m 取何值时,双数i m m m m m z )65(3222++++-+=是〔1〕实数?〔2〕虚数?〔3〕纯虚数?〖变式训练2〗1.实数m 区分取什么值时,双数()i m m z 11-++=是(1)实数?(2)虚数?(3) 纯虚数?2.假定双数()()i m m m m 36522-++-为纯虚数,试务实数m 的值. 3.R b a ∈,,指出不等式i b a b i a b a )62(5)(2-++-->--+-成立的条件. 例3.计算:〔1〕)43()2()65(i i i +---+-=〔2〕)20182017()54()43()32()21(i i i i i -++-+-+-+- = 〖变式训练3〗 1.计算:〔1〕)65()43()21(i i i +--++=〔2〕i i i i i i i i 2018201765432-+⋅⋅⋅+-+-+-=2.命题:①假定两个虚数1z 、2z 的和是实数,那么1z 、2z 是共轭双数;②假定1z 、2z 是共轭双数,那么1z -2z 是纯虚数; 假定双数0=+z z ,那么z 是纯虚数.其中正确的序号是 .3.两个双数1z 和2z ,它们之和是i )21()12(-++,它们之差是+-)12( i )21(+,求1z 、2z .例4.双数1z 、2z 满足121==z z ,且i z z 232121+=+.求1z 、2z 的值. 〖变式训练4〗1.双数i z +=21,i z 212+=,那么双数12z z z -=在复平面内所表示的点位于〔 〕(A)第一象限 (B)第二象限 (C )第三象限 (D)第四象限2.复平面上三点C B A 、、区分对应双数i i 25,2,1+ ,那么由C B A 、、所构成的 三角形是〔 〕(A)直角三角形 (B)等腰三角形 (C)锐角三角形 (D)钝角三角形 3.设双数z 满足2=z ,求i z -的最大值及此时的双数z . 例5.1z 、2z 是双数,1)31(z i +为纯虚数,iz z +=212,且252=z ,求2z . 〖变式训练5〗1.双数z 满足i z i 34)21(+=+,那么z = .2.双数21iz i-=+在复平面内对应的点位于 ( ) 〔A 〕第一象限 〔B 〕第二象限 〔C 〕第三象限 〔D 〕第四象限3.假定将双数2i i +表示为a bi +(,a b R ∈)的方式,那么ab的值为( )(A )2- 〔B 〕21- 〔C 〕2 〔D 〕21例6.设z 是虚数,zz 1+=ω是实数,且21<<-ω. (1)求z 的值及z 的实部的取值范围; (2)设zzu +-=11,求证:u 为纯虚数; (3)求2u -ω的最小值.〖变式训练6〗1.假定双数z 同时满足条件:①6101≤+<zz ;②z 的实部、虚部都是整数.求z . 2.假定双数z 满足1=z ,求证:R zz∈+21. 3.设C z ∈,求满足R zz∈+1且22=-z 的双数z . 例7.〔1〕201832ii i i +⋅⋅⋅+++= .〔2〕i 24143-的平方根是 . 〖变式训练7〗1.100432100432ii i i i +⋅⋅⋅++++= .2.i 247-的平方根是 .3.计算:n 为奇数时,求nn i i i i 22)11()11(+-+-+的值. 例8.设ω是1的立方虚根. (1)求ω;(2)求证:ωω=2; (3)求证:012=++ωω. 〖变式训练8〗1.ω是1的立方虚根,那么2018321ωωωω+⋅⋅⋅++++= . 2.ω为13=x 的一个虚根,那么)1)(1)(1)(1(842ωωωω++++= . 3.012=++x x ,那么504030x x x ++的值为= .例9.〔1〕双数4523213)23()()43(-++=i i z 的模为= .〔2〕设双数z 满足1=z ,求22+-z z 的最大值和最小值,并求相应的z .〖变式训练9〗1.双数2105)31()21()247()43(i i i i i z +--+---=的模为= . 2.假定C z z ∈21,,2121z z z z +是〔 〕(A )纯虚数 〔B 〕实数 〔C)虚数 〔D 〕不能确定3.假定双数21,z z 满足31=z ,52=z ,721=-z z ,求21z z .例10.设双数21,z z 满足关系式02121=++z A z A z z ,其中A 为不等于0的双数. 求证:〔1〕221A A z A z =++;〔2〕Az Az A z A z ++=++2121. 〖变式训练10〗1.〔1〕C z z ∈21,,11=z ,求21211z z z z ⋅--的值;〔2〕假定双数321,,z z z 的模均为3,求321321111z z z z z z ++++的值. 2.21,z z 为非零双数,且满足2121z z z z -=+,求证:221⎪⎪⎭⎫⎝⎛z z 一定为正数.3.设双数21,z z 满足01222121=+-+⋅iz iz z z . 〔1〕假定i z z 212=-,求1z 和2z ; 〔2〕假定31=z ,求证:i z 42-为常数.。