电磁场的边界条件与电磁波的辐射和传播
- 格式:doc
- 大小:356.50 KB
- 文档页数:5
一.边界条件(Boundry Conditions)1.理想电边界(Perfect-E)理想电边界即理想电导体边界.电荷可在其中自由移动.边界内电场为0,边界上可存在面电荷,面电流,从而使外界电场分量垂直与边界,磁场方向平行与边界. 在HFSS design中任何与背景相邻接的部分会被默认为Perfect-E边界(outer)对于矩形波导,若将波导终端端面设置为Perfect-E, 由于波导内电场平行于端面,在边界处被置0,即入射波与反射波在端面处摸值相等,相位相反,叠加为0,由于电压V是对电场强度的积分,因为边界处电场强度为0,则端面处电压为0,相当于终端短路(阻抗值Z=0,在阻抗圆图上表示短路点),VSWR趋于无穷大.(反射系数为1)H模截止频率为以下是对这一过程的仿真,其中矩形波导a=1.5mm, b=1mm,10λ=4.52267mm.取波导长度为100Ghz 取f=120Ghz 满足单模传输。
gλ,将端面设置为Perfect-E 进行测试。
18.09068mm=4*g图1-1 矩形波导主模传输终端设为Perfect-E时电场分布从图1-1可见在端面处电场切向方向为0,电场垂直于端面图1-2矩形波导主模传输终端设为Perfect-E时输入端Smith Chart可见负载端阻抗接近于开路。
L=1/4*g2.理想磁边界(Perfect-H)理想磁边界即理想磁导体,用电磁场理论中的磁荷模型进行分析即磁荷可以在理想磁导体自由移动,理想磁导体中磁场为0,边界上可聚集面磁荷,面磁流,从而使磁场方向垂直于边界。
电场方向与边界相切。
对应于矩形波导终端Perfect-H边界使得磁场垂直于边界,置切向磁场为0,由于电流Z趋向于是切向磁场的积分,故边界使电流为0,而切向电场存在,负载处电压不为0。
故L无穷,VSWR趋向于无穷,相当于终端开路。
以下是对这一过程仿真。
波导参数与上例中完全相同。
端面边界设置为Perfect-H.从图2-1中可看出端面处磁场垂直于端面,切向磁场分量为0。
电磁场理论知识点总结1.麦克斯韦方程组:麦克斯韦方程组是电磁场理论的核心方程,它由四个方程组成,分别是高斯定律、法拉第电磁感应定律、安培环路定律和法拉第电磁感应定律的积分形式。
这些方程描述了电场和磁场随空间和时间的变化规律。
2.电场和磁场的相互作用:根据麦克斯韦方程组,电场和磁场相互作用,通过电场的变化会产生磁场,而通过磁场的变化会产生电场。
这种相互作用是电磁波传播的基础。
3.电磁波的传播:根据麦克斯韦方程组的解,电磁波以光速在真空中传播,它是由电场和磁场相互耦合而成的波动现象。
电磁波的传播速度不同于物质中的电磁波传播速度,它是真空中的最大可能速度。
4.电磁感应现象:根据法拉第电磁感应定律,当一个导体中的磁场发生变化时,会在导体中产生感应电流。
这个现象被广泛应用于发电机、变压器等电磁设备中。
5.静电场和静磁场:当电荷和电流都不随时间变化时,产生的电场和磁场称为静电场和静磁场。
在静电场中,电场符合高斯定律;在静磁场中,磁场符合安培环路定律。
静电场和静磁场的研究对于理解电磁场的基本性质和应用具有重要意义。
6.电磁辐射和辐射场:根据麦克斯韦方程组的解,加速的电荷会辐射出电磁波。
这种辐射就是电磁辐射,它是电磁波传播的一种形式。
辐射场是指由电磁辐射产生的电场和磁场。
7.电磁波的频率和波长:电磁波的频率和波长是描述电磁波特性的两个重要参数。
频率指的是电磁波单位时间内振动的次数,单位是赫兹;波长指的是电磁波的一个完整振动周期所对应的空间距离,单位是米。
8.电磁场的能量和动量:根据电磁场的能量密度和动量密度的定义,可以推导出电磁场的能量和动量公式。
电磁场携带能量和动量,可以与物质相互作用,这是实现无线通信、光学传输等现代科技的基础。
9.电磁场的边界条件:电磁场在介质边界上的反射和折射现象可以通过电磁场的边界条件来描述。
边界条件包括麦克斯韦方程组的边界条件和介质的边界条件,它们确定了电磁场在边界上的行为和传播规律。
电磁场与电磁波易考简答题归纳答:平面波是指波阵面为平面的电磁波。
均匀平面波是指波的电场→E 和磁场→H 只沿波的传播方向变化,而在波阵面内→E 和→H 的方向、振幅和相位不变的平面波。
1、电磁波有哪三种极化情况?简述其区别。
答:(1)直线极化,同相位或相差 180;2)圆极化,同频率,同振幅,相位相差 90或 270;(3)椭圆极化,振幅相位任意。
2、试写出正弦电磁场的亥姆霍兹方程(即亥姆霍兹波动方程的复数形式),并说明意义。
答:002222=+∇=+∇→→→→H k H E k E ,式中μεω22=k 称为正弦电磁波的波数。
意义:均匀平面电磁波在无界理想介质中传播时,电场和磁场的振幅不变,它们在时间上同相,在空间上互相垂直,并且电场、磁场、波的传播方向三者满足右手螺旋关系。
电场和磁场的分量由媒质决定。
3、写出时变电磁场中麦克斯韦方程组的非限定微分形式,并简述其意义。
答:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇→→→→→→→ρεμμεE H t H E tE J H )4(0)3()2()1(物理意义:A 、第一方程:时变电磁场中的安培环路定律。
物理意义:磁场是由电流和时变的电场激励的。
B 、第二方程:法拉第电磁感应定律。
物理意义:说明了时变的磁场激励电场的这一事实。
C 、第三方程:时变电场的磁通连续性方程。
物理意义:说明了磁场是一个旋涡场。
D 、第四方程:高斯定律。
物理意义:时变电磁场中的发散电场分量是由电荷激励的。
4、写出麦克斯韦方程组的微分形式或积分形式,并简述其意义。
答:(1)微分形式(2) 积分形式 物理意义:同第4题。
5、写出达朗贝尔方程,即非齐次波动方程,简述其意义。
答:→→→-=∂∂-∇J tA A μμε222,ερμε-=∂Φ∂-Φ∇→→222t 物理意义:→J 激励→A ,源ρ激励Φ,时变源激励的时变电磁场在空间中以波动方式传播,是时变源的电场辐射过程。
吸收边界条件,阻抗边界条件,响应边界条件,辐射边界条件-概述说明以及解释1.引言1.1 概述本文旨在介绍不同类型的边界条件,包括吸收边界条件、阻抗边界条件、响应边界条件和辐射边界条件。
在仿真和建模领域中,边界条件的选择和应用对于准确模拟和分析电磁问题至关重要。
吸收边界条件是一种用于模拟无限大空间中的电磁问题的技术。
通过在仿真模型的边界上引入吸收材料,能够有效地消除反射并吸收通过边界传播的电磁波。
本文将详细介绍吸收边界条件的原理、应用和优势。
阻抗边界条件是一种在电磁波传播问题中常用的边界条件。
它模拟了电磁波在传播过程中遇到的边界上的阻抗。
阻抗边界条件常用于模拟导体表面的电磁问题,例如导体内的电流分布和电磁波的反射和传播。
本文将探讨阻抗边界条件的应用领域、数学描述和数值求解方法。
响应边界条件是一种在传输线和波导等电磁结构模拟中常用的边界条件。
它通过限定边界处的电磁场响应来刻画边界的特性。
响应边界条件能够有效地解决电磁波与电磁结构边界之间的相互作用问题,以及信号在导体间的传输问题。
本文将探讨响应边界条件的基本原理、适用范围和求解方法。
辐射边界条件是一种用于模拟辐射场的特殊边界条件。
它通过描述辐射场与边界的相互作用来模拟电磁波辐射问题。
辐射边界条件常用于天线、散射和辐射场的仿真和分析中。
本文将详细介绍辐射边界条件的原理、应用和准确性评估。
通过研究和了解吸收边界条件、阻抗边界条件、响应边界条件和辐射边界条件的原理和应用,我们可以更准确地模拟和分析各种电磁问题。
这将为电磁波的传播、电磁结构的设计和电磁场的控制提供有力的工具和方法。
在接下来的章节中,我们将详细讨论每种边界条件的要点和实际应用。
1.2 文章结构文章结构部分的内容可以按照以下方式进行编写:本文共分为三个主要部分:引言、正文和结论。
在引言部分,我们首先对边界条件进行了概述,包括吸收边界条件、阻抗边界条件、响应边界条件和辐射边界条件。
然后,我们介绍了本文的结构,包括各个章节的内容和组织方式。
《电磁场与电磁波》课程教学大纲一、课程基本信息课程代码:课程名称:电磁场与电磁波英文名称:Electromagnetic Fields and Electromagnetic Waves课程类别:专业基础课学时:63学分:3适用对象: 电子信息专业考核方式:考试先修课程:大学物理、高等数学与工程数学(包括矢量分析,场论和数理方程等)二、课程简介电磁场与电磁波是通信技术的理论基础,是电子信息专业本科学生的知识结构中重要组成部分。
本课程使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。
使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。
培养学生正确的思维方法和分析问题的能力,使学生学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。
为后续课程打下坚实的理论基础。
Electromagnetic Field and Electromagnetic Wave is the theoretical foundation of communication technology, it is one of the most important components of the knowledge structerue for undergraduate students who major in information and electronic. Electromagnetic Field and Electromagnetic Wave make students grasp the theorem and the physical meaning of the Maxwell equations and mathematical expressions. It also make students grasp building method and analyzing method of some important mathematical model (such as wave equation,Laplace equation). This course trains students on the proper ways of thinking and ability to analyze issues, It also provides a solid theoretical foundation for following courses.三、课程性质与教学目的一切电现象,都会产生电磁场,而电磁波的辐射与传播规律,更是一切无线电活动的基础。
电磁场的边界条件与电磁波的辐射和传播
[摘要]:本文结合相关示意图简要总结了电磁场的边界条件,在参考大量相关文献的基础上,由边界条件出发分析了交变电磁场传播的原理,联系实际解释了电磁场的辐射和传播。
关键字:电磁场;电磁波;边界条件;辐射;传播。
一、电磁场的边界条件
电磁场在两种不同媒质分界面上,从一侧过渡到另一侧时,场矢量E、D、B、H一般都有一个跃变。
电磁场的边界条件就是指场矢量的这种跃变所遵从的条件,也就是两侧切向分量之间以及法向分量之间的关系。
电磁场的边界条件可以由麦克斯韦方程组的积分形式推出,它实际上是积分形式的极限结果。
这些边界条件是:
n·(D1-D2)=ρs; (1)
n×(E1-E2)=0; (2)
n·(B1-B2)=0; (3)
n×(H1-H2)=J)s。
(4)
式中n为两媒质分界面法线方向的单位矢量,场矢量E、D、B、H的下标1或2分别表示在媒质1或2内紧靠分界面的场矢量,ρ为分界面上的自由电荷面密度,J为分界面上的传导电流面密度。
式(1)表示在分界面两侧电位移矢量D的法向分量的差等于分界面上的自由电荷面密度。
当分界面上无自由电荷时,两侧电位移矢量的法向分量相等,即其法向分量是连续的。
式(2)表示在分界面两侧电场强度E的切向分量是连续的。
式(3)表示在分界面两侧磁通密度B的法向分量是连续的。
式(4)表示在分界面两侧磁场强度H的切向分量的差等于分界面上的表面传导电流面密度。
当分界面上无表面传导电流时,两侧磁场强度的切向分量相等,即其切向分量是连续的。
当媒质2为理想导体时,E2、D2、B2、H2等于零,式(1)表示D1的法向分量等于自由电荷面密度;式(2)表示E1无切向分量.式(3)表示B1的法向分量为零;式(4)表示H1的切向分量等于表面传导电流面密度,并且与电流方向正交。
二、电磁波的辐射和传播
电磁波的产生与发射是通过天线来实现的。
由振荡电路产生的强大交变讯号通过互感耦合到天线上,天线就有交变电流产生,如下图所示。
此交变电流在天线周围激发交变磁场,交变磁场又激发交变的涡旋电场,交变的涡旋电场又反过来激发交变的涡旋磁场.如此相互激发产生电磁波并将其传播开去。
我们以天线上的交变电流变化一个周期为例,来说明电磁波的产生与传播过程。
如上图所示,当(a)图中天线上有向上的电流时,它激发的磁场环绕天线。
磁感应线从右边进入纸面,从左边穿出纸面。
对于具有相同大小磁感强度的空间各点,在天线两端的场点到天线轴线距离比天线中部的场点到天线轴线的距离要小些,以此为原则定性地画出了磁感应线的箭头“·”和箭尾“x”;当电流增加时,磁场也随之增大,由麦克斯韦涡旋电场的假说,此变化的磁场就激发涡旋电场,天线右边的电场线逆时针,左边的电场线顺时针,图(b)。
当电流达到极大值而后减小时,如前一时刻产生的闭合电场线已经传开。
由于电磁场的传播需要时间,这就使得当天线近处空间的磁场开始减小时,远处空间的磁场还在增加,它产生的电场的电场线的绕行方向仍与前一时刻靠近天线的电场线绕行方向相同。
比较图(b)与图(c)就清楚地看到了这一点,此时近处电场的电场线由于磁场减小使得在天线右边是顺是针,左边是逆时针,如图(c)所示。
当电流变小到反向时天线周围的磁场也跟着反向。
先前右边进,左边出的磁场已传向远方,不过由于近处磁场相对于右边进,左边出的方向来说仍是减小,故涡旋电场的电场线的方向不变,只是向外扩张,如图(d)所示。
只有当电流向下增大到极大值而反向减小时,电场的电场线的方向才反转过来,此时图(d)的电场线已向远处传播开去,如图(e)所示。
当电流反向减小到零而正向增大时,电流变化完成一个周期,电磁场的传播如图(f)所
示。
这便又开始了从图(b)到(f)的过程,如此周而复始地将电磁波产生与传播开去。
如果将电磁波传播的空间图象的一个波长与波源处B变化一个周期对应起来,就得出图3。
取天线中电流为零的时刻为一个周期的开始,此时波源处的B为零一个周期终了之后,该周期开始时波源激发的B传得最远,对应电磁波传播一个周期的图象应是电磁波的波前,即图(4)中圆形虚线。
通过以上电磁波的产生与传播过程的分析可以清楚地看到:
(1)天线上交变电流激发交变磁场,交变磁场又激发交变电场,很明显交变电磁场是与天线中交变电流具有相同周期的周期函数。
(2)从图4中的A,C,D三点处的电场E,磁场B来看,A处因两边电场线的绕行方向相反,使得它的电场线同向,E向下最大,此时B也恰好向里最大;在C点处,因两边电场线的绕行方向相同,使得它的电场线方向相反,E为零,B也恰好为零;D点处因两边的电场线绕行方向相反,它的电场线同向,E向上最大,此处B也恰好向外最大,这就说明,电磁波中电场E,磁场B的变化是同步的。
( 3)从图3或图4中,我们还可以清楚地看到磁场H与电场E是相互垂直的,并且垂直于电磁波的传播方向,说明电磁波是横波.同时从图4A处的电场E(方向向下,沿y 轴负向),磁场H(方向向内,沿z轴负向),与传播方向即波速:(方向向右,沿x轴)的关系看,E,H,:不仅相互垂直,而且互成右手螺旋,从D点也可以看出这点,这就说明:
v的方向是EXH的方向。
( 4)对于一给定天线发射的电磁波,在某一给定的传播方向上,电场磁场的振动方向各自总是一定的,如图3所示,磁场振动方向总是垂直于纸面,电场振动方向总是平行于纸面,也就是说电磁波具有偏振性。
参考文献:
[1]何文质.关于电磁场边界条件的另一种合适推求[J].河北机电学院学报,1991年第8卷第1期:80~86.
[2]黄明哲.电磁波的传播与辐射[J].高等函授学报(自然科学版),1996年第4期:37~39.
[3]杜晓燕,杨明珊,张秀钢.关于电磁场边界条件教学的几点思考[J].电气电子教学学报,2011年第33卷第4期:112~117.
[4]张洪欣.电导率有限媒质分界面电磁场的边界条件[J].吉首大学学报(自然科学版),2007年第28卷第2期:48~50.。