2.7电磁场的边界条件解析
- 格式:ppt
- 大小:757.50 KB
- 文档页数:18
第八讲:麦克斯韦方程组、电磁场的边界条件2.6麦克斯韦方程组2.7电磁场的边值关系1、了解麦克斯韦方程组的建立过程,掌握它的基本性质;2、了解边界上场不连续的原因,能导出电磁场的边值关系;3、掌握电磁场方程微分形式和边界形式的联系与区别。
重点:1)麦克斯韦方程组的基本性质;2)电磁场的边值关系 难点:电磁场切向边值关系的推导 讲授法、讨论 2学时2.6麦克斯韦方程组(Maxwell ’sEquations )一、麦克斯韦方程1865年发表了关于电磁场的第三篇论文:《电磁场的动力学理论》,在这篇论文中,麦克斯韦提出了电磁场的普遍方程组,共20个方程,包括20个变量。
直到1890 年,赫兹才给出简化的对称形式:00001(1)(2)0(3)(4)BE E tE B B J tρεμμε⎧∂∇⋅=∇⨯=-⎪∂⎪⎨∂⎪∇⋅=∇⨯=+⎪∂⎩实验定律3、法拉第电磁感应定律4、电荷守恒定律12314dq dq dF RR πε=S D dS q ⋅=⎰0l E dl ⋅=⎰34JdV R dB R μπ⨯=0SB dS ⋅=⎰()0=⋅∇B CH dl I ⋅=⎰()JH =⨯∇tB E ∂∂-=⨯∇ 0=∂∂+⋅∇tJ ρ 0J ∇⋅≡对矛盾的解决麦克斯韦理论稳恒况缓变情况2、毕奥-沙伐尔定律1、库仑定律()/ερ=⋅∇E()=⨯∇E t S d B dt d S ∂⎰⋅∂-=Φ-= ε0S QJ dS t ∂⋅+=∂⎰→上式即为真空中的麦克斯韦方程组,其中(2)(4)含有对时间的偏导数,对应 运动方程,(1)(3)为约束方程。
二、麦克斯韦方程组的基本性质 1、线性性麦克斯韦方程组是一组线性方程,表明场服从迭加原理。
2、自洽性方程组各个方程彼此协调,且与电荷守恒定律协调。
如(2)式和(3)式一致:由(2)式有:()0=∂⋅∂∇-=⨯∇⋅∇tBE⇒C B =⋅∇ ,考虑到静磁时0=⋅∇B,所以取0=C 。
电磁场的边界条件姓名:学号:专业:班级:提交日期:桑薇薇0990*******通信工程电工 1401 2016.5.28成绩:电磁场的边界条件1.引言2.边界条件分类3.边界条件的作用4.结束语5.参考文献1. 引言在两种不同媒质的分界面上,场矢量E,D,B,H 各自满足的关系,称为电磁场的边界条件。
在实际的电磁场问题中, 总会遇到两种不同媒质的分界面 (例如: 空气与玻璃的分界面、导体与空气的分界面等) ,边界条件在处理电磁场问题中占据十分重要的地位。
2. 边界条件分类1、电场法向分量的边界条件如图 3.9 所示的两种媒质的分界面, 第一种媒质的介电常数、磁导率和电导率分别为1,1和1,第二种媒质的介电常数、磁导率和电导率分别为2,2和 2 。
在这两种媒质分界面上取一个小的柱形闭合面,图 3.9 电场法向分量的边界条件如图 3.9 所示,其高h 为无限小量,上下底面与分界面平行,并分别在分界面两侧, 且底面积 S 非常小,可以认为在 S 上的电位vv v移矢量 D和面电荷密度S是均匀的。
n 1 n 2分别为上下底面的外法线单位矢量, , 在柱形闭合面上应用电场的高斯定律? v vv v S v vSSD gdS n 1 gD 1 n 2 gD 2 SS故v v v vn 1gD 1 n 2 gD 2S(3.48a)vv vvv若规定 n 为从媒质Ⅱ指向媒质Ⅰ为正方向,则 n 1 n ,n2n,式 (3.48a) 可写为v vvng(D 1D 2 )S(3.48b)或D1nD2nS(3.48c)式 (3.48 ) 称为电场法向分量的边界条件。
vvv 因为 DE ,所以式 (3.48) 可以用 E 的法向分量表示v v v v1n 1gE 12 n 2 gE 2S(3.49a)或1E 1n2 E 2nS(3.49b)若两种媒质均为理想介质时, 除非特意放置, 一般在分界面上不存在自由面电荷,即S,所以电场法向分量的边界条件变为D1nD2n(3.50a)或1E1n 2E2 n(3.50b)若媒质Ⅰ为理想介质,媒质Ⅱ为理想导体时, 导体内部电场为零,即E2,D2,在导体表面存在自由面电荷密度,则式(3.48) 变为v vn 1 gD 1 D 1nS(3.51a)或1E1ns(3.51b)2 、电场切向分量的边界条件在两种媒质分界面上取一小的矩形闭合回路 abcd ,如图 3.10 所示,该回路短边 h 为无限小量,其两个长边为l ,且平行于分界面,并分别在分界面两侧。
1)麦克斯韦方程组可以应用于任何连续的介质内部。
2)在两种介质界面上,介质性质有突变,电磁场也会突变。
3)分界面两边按照某种规律突变,称这种突变关系为电磁场的边值关系或边界条件。
4)推导边界条件的依据是麦克斯韦方程组的积分形式。
一、边界条件的一般形式 1、B 的边界条件:2、D 的边界条件结论:电位移矢量 在不同媒质分界面两侧的法向分量不连续,其差值等于分界面上自由电荷面密度。
3. H 的边界条件h∆→n-2B11220B dS B dS ⇒⋅+⋅=120B n B n ⇒⋅-⋅=210lim S h D H l H l J sl t→∂⇒⋅-⋅=⋅-⋅∂2t t SH H J⇒-=12()S n H H J⇒⨯-=21,S H l H l J s l n s⇒⋅-⋅=⋅=⨯()C sD H dl J dSt∂=+∂⎰⎰μ1μ2Hn1Hh →ls12()S n H H J⨯-=12()D D n σ-⋅=⇒2εε2D 1D n S∆n-n12n n D D σ⇔-=0S B dS ⋅=⎰12()0n B B ⋅-=21n nB B⇒=SD dS q =⋅⎰⇒⇒式中: S J 为介质分界面上的自由电流面密度。
结论:磁场强度 D 在不同媒质分界面两侧的切向分量不连续,其差值等于分界面上的电流面密度S J4.E 的边界条件结论:电场强度E 在不同每只分界面两侧的切向分量连续。
二、理想介质是指电导率为零的媒质,0=γ2)在理想介质内部和表面上,不存在自由电荷和自由电流。
结论:在理想介质分界面上,E 、H 矢量切向连续; 在理想介质分界面上,B 、D 矢量法向连续。
三、理想导体表面上的边界条件1)理想介质是指电导率为无穷大的导体,12t t E E⇒=12()0n E E ⇒⨯-= 2ε1ε2En1E2θl sl S BE dl d St∂⋅=-⋅∂⎰⎰12()0n E E ⨯-=⇒12t t EE=0s J =0ρ=12t t H H =⇒12n n D D=12()0n D D ⋅-=⇒12()0n B B ⋅-=12n n B B=⇒12()0n H H ⨯-=2)电场强度和磁感应强度均为零。
电磁场的边界条件与电磁波的辐射和传播[摘要]:本文结合相关示意图简要总结了电磁场的边界条件,在参考大量相关文献的基础上,由边界条件出发分析了交变电磁场传播的原理,联系实际解释了电磁场的辐射和传播。
关键字:电磁场;电磁波;边界条件;辐射;传播。
一、电磁场的边界条件电磁场在两种不同媒质分界面上,从一侧过渡到另一侧时,场矢量E、D、B、H一般都有一个跃变。
电磁场的边界条件就是指场矢量的这种跃变所遵从的条件,也就是两侧切向分量之间以及法向分量之间的关系。
电磁场的边界条件可以由麦克斯韦方程组的积分形式推出,它实际上是积分形式的极限结果。
这些边界条件是:n·(D1-D2)=ρs; (1)n×(E1-E2)=0; (2)n·(B1-B2)=0; (3)n×(H1-H2)=J)s。
(4)式中n为两媒质分界面法线方向的单位矢量,场矢量E、D、B、H的下标1或2分别表示在媒质1或2内紧靠分界面的场矢量,ρ为分界面上的自由电荷面密度,J为分界面上的传导电流面密度。
式(1)表示在分界面两侧电位移矢量D的法向分量的差等于分界面上的自由电荷面密度。
当分界面上无自由电荷时,两侧电位移矢量的法向分量相等,即其法向分量是连续的。
式(2)表示在分界面两侧电场强度E的切向分量是连续的。
式(3)表示在分界面两侧磁通密度B的法向分量是连续的。
式(4)表示在分界面两侧磁场强度H的切向分量的差等于分界面上的表面传导电流面密度。
当分界面上无表面传导电流时,两侧磁场强度的切向分量相等,即其切向分量是连续的。
当媒质2为理想导体时,E2、D2、B2、H2等于零,式(1)表示D1的法向分量等于自由电荷面密度;式(2)表示E1无切向分量.式(3)表示B1的法向分量为零;式(4)表示H1的切向分量等于表面传导电流面密度,并且与电流方向正交。
二、电磁波的辐射和传播电磁波的产生与发射是通过天线来实现的。
由振荡电路产生的强大交变讯号通过互感耦合到天线上,天线就有交变电流产生,如下图所示。
5、电磁场边界条件分析为了分析液态金属流场和电磁场的相互耦合作用,我们现在对计算边界条件进行分析,以截面为正方形的管道面为例进行分析流体和壁之间的感应电流和感应磁场的分布情况。
对于如图所示有一定壁厚的管道,我们可对管道壁为导电壁和完全电绝缘壁两种情况进行分析。
(1)如果壁为完全电绝缘壁,当流体以如图所示的方向流动时,这种的导电的液态金属中的载流子必然会在洛伦磁力的作用下向平行于磁场方向的两壁运动,而这种定向运动的载流子必然会形成电流。
而电流向水流一样只有在阻力小的地方流动才会畅通,因此当管道芯部产生的电流流向侧面管壁时,只能贴着壁向上下两端流动。
如下图所示;也就是说,在贴近管道壁的地方电流是与该壁平行的,而且这种电流只存在于壁面边界层内,壁上没有电流。
有电流存在就必然会产生磁场,下面分别对四个壁面边界层中的感应电流和感应磁场做分析。
侧面有J y≠0 该感应电流会产生感应磁场,根据右手螺旋定则贴近壁处的感应磁场应该是有两个方向。
对于管道的上半部,感应磁场方向与速度方向相同,管道下半部,感应磁场方向与速度方向相反。
也就是说在侧面壁上感应磁场有:bx≠0,by=0,bz≠0。
但是这里只考虑的是管道的一面截面,而管道应该是这样的很多个截面沿着x轴方向的组合,因此整体考虑的话,bz=0。
J z=0J x=0上下壁面有Jz≠0 分析同上,可知上下壁面的感应磁场为:bz≠0,bx=0,by=0Jx=0Jy=0(2)如果壁时导电的,当芯部流体产生的感应电流流经侧面面壁时必然会通过该壁,从而在管道壁中也有感应电流存在。
如下图所示:侧面壁有Jz≠0 导电壁不像完全电绝缘壁那样,在该侧面边界层内不存在平行于壁的电流,只存在与垂直于壁的电流。
分析可知bx≠0,by=0,bz=0且侧面上半部和下半部的感应磁场方向相反。
Jy=0 Jx=0上下壁面有,对于壁的电导率比流体的电导率高的情况,就相当于壁是良导体,因此芯部产生的感应电流不会存在于壁面边界层中,而只能在管道壁中。
电磁场三类边界条件电磁场三类边界条件电磁场的边界条件是指在介质边界处,电场和磁场的变化情况。
根据边界条件的不同,可以将其分为三类:第一类边界条件、第二类边界条件和第三类边界条件。
下面将详细介绍这三类边界条件。
一、第一类边界条件第一类边界条件也称为零法向电场和零切向磁场边界条件。
它是指在介质表面上,法向于表面的电场强度和切向于表面的磁感应强度均为零。
1. 零法向电场在介质表面上,由于介质内部和外部存在不同的电荷分布情况,因此会产生一个法向于表面方向的电场。
而当这个电场穿过介质表面时,就会发生反射和折射现象。
为了描述这种现象,我们需要引入一个重要的物理量——法向于表面方向上的电通量密度。
根据高斯定理可知,在任意一个闭合曲面内部,通过该曲面的总电通量等于该曲面所包围空间内部所有自由电荷之代数和。
因此,在介质表面附近,我们可以将其看作一个微小的闭合曲面。
则在该曲面上的电通量密度可以表示为:$$\vec{D_1}\cdot\vec{n}=\rho_s$$其中,$\vec{D_1}$表示介质1内部的电位移矢量,$\vec{n}$表示介质表面法向矢量,$\rho_s$表示表面自由电荷密度。
当我们将这个式子应用于介质表面时,可以得到:$$D_{1n}=\rho_s$$其中,$D_{1n}$表示介质1内部法向于表面方向上的电场强度。
由于介质表面上不存在自由电荷,因此$\rho_s=0$。
因此,在第一类边界条件下,法向于介质表面方向上的电场强度为零。
2. 零切向磁场在介质表面上,由于介质内部和外部存在不同的磁场分布情况,因此会产生一个切向于表面方向的磁感应强度。
而当这个磁场穿过介质表面时,就会发生反射和折射现象。
为了描述这种现象,我们需要引入一个重要的物理量——切向于表面方向上的磁通量密度。
根据安培环路定理可知,在任意一个闭合回路上,通过该回路的总磁通量等于该回路所包围空间内部所有电流之代数和。
因此,在介质表面附近,我们可以将其看作一个微小的闭合回路。
电磁场三类边界条件介绍在电磁学中,边界条件是解决电磁场问题时的重要问题之一。
电磁场三类边界条件指的是麦克斯韦方程组在不同介质之间的边界上的满足条件。
这些条件在电磁场问题的求解中起到了关键的作用。
在本文中,我们将详细探讨电磁场三类边界条件的定义和应用。
一、第一类边界条件第一类边界条件也称为电磁场的法向边界条件。
其主要定义了电场和磁场在边界上的法向分量之间的关系。
具体表达如下:1.在介质边界上,电场的法向分量E n1和E n2满足:E n1=E n2;2.在介质边界上,磁场的法向分量H n1和H n2满足:H n1=H n2。
第一类边界条件体现了介质边界上的电场和磁场的连续性。
二、第二类边界条件第二类边界条件也称为电磁场的切向边界条件。
其主要定义了电场和磁场在边界上的切向分量之间的关系。
具体表达如下:1.在介质边界上,电场的切向分量E t1和E t2满足:E t1ϵ1=E t2ϵ2;2.在介质边界上,磁场的切向分量H t1和H t2满足:H t1μ1=H t2μ2。
其中,ϵ1和ϵ2分别为两个介质的介电常数,μ1和μ2分别为两个介质的磁导率。
第二类边界条件体现了介质边界上的电场和磁场的连续性和切向分量之间的比例关系。
三、第三类边界条件第三类边界条件也称为电磁场的混合边界条件。
其主要定义了电场和磁场在边界上的法向分量和切向分量之间的关系。
具体表达如下:1.在介质边界上,电场的法向分量E n1和E n2满足:E n1=E n2;2.在介质边界上,磁场的法向分量H n1和H n2满足:H n1=H n2;3.在介质边界上,电场的切向分量E t1和E t2满足:E t1ϵ1=E t2ϵ2;4.在介质边界上,磁场的切向分量H t1和H t2满足:H t1μ1=H t2μ2。
第三类边界条件综合了第一类和第二类边界条件,体现了介质边界上的电场和磁场的连续性以及法向分量和切向分量之间的比例关系。
四、应用举例电磁场三类边界条件在电磁学中的应用非常广泛,下面我们以几个实际问题为例,说明其应用方法:例一:平行板电容器考虑一对平行金属板构成的电容器,两板之间填充了介电常数为ϵ的均匀介质。