1.2.4绝对值2
- 格式:ppt
- 大小:246.00 KB
- 文档页数:13
第一章 有理数1.2.4绝对值(2)有理数大小比较 (课时序数7课时)一.根据课题预示本课学习目标;1.会根据数轴比较两个有理数2.会运用比较绝对值的大小比较两个负数的 .二.情境引入1.我地冬季某一天的8时的气温为-1℃,12时的气温为4℃,23时的气温是-3℃.在这个问题中气温最高的是 .气温最低是 ,请你用”>”表示出这三个时间段的温度关系 . 2.请你画一个数轴,并把上题中三个不同时段的温度表示在数轴上.然后观察数轴上的数的特点是;它右边的数总比它左边的数 .3.由2题的数轴你发现了数轴上的数的特点是:(1)数轴上右边的数总比它左边的数 ;(2)正数大于0,0大于 正数大于 (3)两个负数比较大小 .三.新知识导学:由上面问题的探究我们很容易比较,两个正,正数和0,正数和负数,负数和0的大小,但两负数比较大小就不是那么简单了.要想掌握它请看下面例子对两个负数比较大小的步骤.例1.比较下列各对数和的大小1.-(+3)和-(-2); 2.-3和-1.5 3.-15853和- 解:1.因为-(+3)=-3-(-2)=2而-3<2所以-(+3)<-(-2)老师语:带有双符号的数比较大小时注意先化简再比较;两个负数比较大小(1)先求这两个负数的绝对值(2)比较绝对值的大小(3)再落到原两个负数比较大小四.有效训练1.比较下列各对数和的大小(1). -(-6)和-(+4) (2). -7和-9 (3). -65和-322、已知∣a ∣=2,∣b ∣=2, ∣c ∣=4.且有理数a,b,c 在数轴上的位置如下图所示,试计算a+b+c 的值。
五.课后感1.有理数比较大水的法则是:正数大于 和 ;0大于 ;两个负数比较 . 2.两个负数比较大小的三个步骤是;(1) (2)(3)作业设计:一. 填空题1、(1)∣+51∣= ;∣3.5∣= ;∣0∣= ; (2)-∣-3∣= ;-∣+3.7∣= ; (3)∣-8∣+∣-2∣= ;∣-6∣÷∣-3∣= ;∣6.5∣-∣-521∣= . 2、-321的绝对值是 ;绝对值等于321的数是 ,它们互为 。
1.2.4 绝对值(二)1.理解、掌握有理数大小比较法则;2.能熟练运用有理数大小比较法则,结合数轴比较有理数的大小,能利用数轴对多个有理数进行有序排列;3.体验运用直观知识解决数学问题.重点:运用有理数大小比较法则,借助数轴比较两个有理数的大小; 难点:利用绝对值比较两个负数的大小.一、温故知新1.比较下列各组数的大小: ①2__<__3;②34__>__23;③12__>__0;④0__<__0.001. 2.引入负数后,对于任意有理数(如-2和-1,-3和0,-2和2)怎样比较大小呢?二、自主学习阅读思考,发现新知.阅读P12,你有什么发现吗? 讨论交流在数轴上表示的两个数,右边的数总要大于左边的数.也就是: (1)正数大于0,负数小于0,正数大于负数; (2)两个负数,绝对值大的反而小. 自学例题 P13 (教师指导) 重点书写格式示范指导 三、拓展提高例1 写出3个小于-1并且大于-2的数. 如:-1.2,-1.5,-1.8.例2 已知|x |=6,|y |=5,且x <y ,求x ,y 的值. 解:∵|x |=6,|y |=5,又∵x <y , ∴x =±6,y =±5.∴x =-6,y =±5.1.比较下列各对数的大小:-3和-5; -2.5和-∣-2.25∣. -3>-5; -2.5<-|-2.25|.1.比较有理数大小的方法有两种:方法一:利用数轴,把数用数轴上的点表示出来,然后根据“数轴上左边的点所表示的数比右边的点所表示的数小”来比较.方法二:利用比较有理数大小的法则“正数大于0,0大于负数,正数大于负数,两个负数,绝对值大的反而小”来进行.2.在比较有理数的大小前,要先化简,从而知道哪些是正数,哪些是负数.有理数的减法法则l .有理数的减法法则是:减去一个数等于加上这个数的___________, 用字母表示成:_______________________________ 2.下列括号内应填什么数?(1)(-2)-(-5)=(-2)+(______); (2)0-(-4)=0+(______); (3)(-6)-3=(-6)+(______); (4)1-(+37)=1+(______). 3.温度3℃比-7℃高_______;温度-8℃比-2℃低_______.4.海拔-200m 比300m 高________;从海拔250m 下降到100m ,下降了________. 5.数轴上表示数-3的点与表示数-7的点的距离为________.6.85减去1的差的相反数等于________;352-的相反数为________.7.3--比-(-3)小________;比-5小-7的数是________;比0小-3的数是________.8.下列结论中正确的是( )A .两个有理数的和一定大于其中任何一个加数B .零加上一个数仍得这个数C .两个有理数的差一定小于被减数D .零减去一个数仍得这个数8.下列说法中错误的是( )A .减去一个负数等于加上这个数的相反数B .两个负数相减,差仍是负数C .负数减去正数,差为负数D .正数减去负数,差为正数9.下列说法中正确的是( ) A .减去一个数等于加上这个数 B .两个相反数相减得OC .两个数相减,差一定小于被减数D .两个数相减,差不一定小于被减数10.下列说法正确的是( ) A .绝对值相等的两数差为零 B .零减去一个数得这个数的相反数C .两个有理数相减,就是把它们的绝对值相减D .零减去一个数仍得这个数 11.差是-7.2,被减数是0.8,减数是( )A .-8B .8C .6.4D .-6.412.若0>a ,且ba >,则b a -是( )A .正数B .正数或负数C .负数D .013.计算:(1)(-5)-(-3); (2)0-(-7); (3)(+25)-(-13); (4)(-11)-(+5); (5)12-21;(6)(-1.7)-(-2.5); (7)⎪⎭⎫ ⎝⎛--2132; (8)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-3161; (9)()8.1546--⎪⎭⎫⎝⎛-.11 有理数的混合运算1.进一步掌握有理数的运算法则和运算律.2.使学生能够熟练地按有理数的运算顺序进行混合运算.重点有理数的混合运算. 难点准确地掌握有理数的运算顺序和运算中的符号问题.一、复习导入1.指名学生计算:(1)(-2)+(-3); (2)7×(-12); (3)17-(-32);(4)(-2)3; (5)-23; (6)021; (7)(-4)2;(8)(-2)4; (9)-100-27; (10)1×(-2); (11)-7+3-6; (12)(-3)×(-8)×25.2.教师:说一说我们学过哪些有理数的运算律. 学生:加法交换律:a +b =b +a.加法结合律:(a +b)+c =a +(b +c). 乘法交换律:ab =ba.乘法结合律:(ab)c =a(bc) 乘法分配律:a(b +c)=ab +ac.教师:前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有加、减、乘、除、乘方的混合运算,按怎样的顺序进行计算?二、探究新知教师:同学们,请观察下面的算式里有哪几种运算?3+50÷22×(-2)-1.学生:这道算式里,含有有理数的加、减、乘、除、乘方多种运算. 教师:对的!像这种运算,我们称为有理数的混合运算. 课件出示: 计算:(1)-50÷2×4; (2)6÷(3×2); (3)6÷3×2;(4)17-8÷(-2)+4×(-3);(5)32-50÷22×232-1.学生独立完成,教师点评,并提出问题:通过上面的练习,你能总结出有理数混合运算的顺序吗?学生分小组讨论后回答,教师点评,并进一步讲解: 有理数混合运算的运算顺序:(1)先算乘方,再算乘除,最后算加减; (2)同级运算,按照从左至右的顺序进行;(3)如果有括号,先算小括号里面的,再算中括号里面的,最后算大括号里面的. 注意:①加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方叫做第三级运算.②可以应用运算律适当改变运算顺序,使运算简便.③进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法.课件出示:计算:3×(8-3)÷1×13.要求学生写出解答过程,教师点评,并进一步讲解:本题按常规运算顺序,应先算小括号里的减法,运算较繁,观察算式中的数字特征,可发现首尾两数互为倒数,根据这一特征,抓住算式的结构特点及数与数之间的关系,利用运算律,适当改变运算顺序.解:原式=3×1×13×(8-3)=1×(8-3)=8-3=5.三、举例分析例1(课件出示教材第65页例1)要求学生独立完成并汇报答案,教师讲评. 例2(课件出示教材第65页例2)要求学生用不同的方法解答,教师讲评. 四、练习巩固1.教材第66页“随堂练习”.2.底面半径为10 cm ,高为30 cm 的圆柱形水桶中装满了水.小明先用桶中的水将2个底面半径为3 cm ,高为 5 cm 的圆柱形杯子倒满,再把剩下的水倒入长、宽、高分别为50 cm ,20 cm 和20 cm 的长方体容器内.长方体容器内水的高度大约是多少厘米?(π取3,容器的厚度不计)五、小结1.有理数混合运算的顺序是什么?2.通过本节课的学习,你还有什么不明白的地方吗? 六、课外作业教材第67页习题2.16第1,2题.本节课主要教学有理数的加、减、乘、除、乘方混合运算.学生早已熟练掌握了运算顺序“先乘除后加减”. 从学生已有的知识出发,探究新知识就比较简单.激发学生主动参与,把学生的注意力和思维活动调节到积极状态,培养学生思维的灵活性.在教学过程中,通过题目的训练,由浅入深,让学生合作交流,总结出有理数混合运算的顺序,进一步理解有理数混合运算顺序的正确性.注重学生的参与,并适当鼓励,让他们感受成功的喜悦,从而激发学习的动力.教完本节课后,我发现学生在计算有理数混合运算时主要存在两个问题:一是运算顺序出现问题;二是混淆了加和乘的运算,尤其是两个负数相加经常和乘法中的负负得正弄乱,异号相加也出现问题.究其原因还是因为没有完全熟练,没有达到理解进而形成直觉.希望通过不间断的练习加强重现的机会,让学生逐步加深理解进而形成直觉.。
人教版初中七年级数学第一单元有理数1.2.4 第二课时 有理数的大小比较一、教学目标(一)学习目标1.理解并掌握有理数大小的比较的方法;2.会比较有理数的大小,并能正确地使用“>”或“<”号连接; 3.通过对有理数大小比较方法的推理,培养学生的数学推理能力.(二)学习重点运用绝对值的知识比较两个负数的大小;(三)学习难点有理数大小比较的推理.二、教学设计(一)课前设计 1.预习任务(1)在数轴上,右边的数总比左边的数大; (2)正数大于0,负数小于0,正数大于负数; (3)两个负数比较,绝对值大的反而小. 2.预习自测(1)有理数a 在数轴上对应的点如图所示,则a ,a -,-1的大小关系是 ( )A .1-<<-a aB .a a <-<-1C .a a -<-<1D .1-<-<a a【知识点】有理数的大小比较 【数学思想】数形结合【解题过程】解:由数轴可知:a a -<-<1【思路点拨】根据数轴上的点,左边的数总比右边的数小即可求解. 【答案】Ca(2)下列四个数中,最大的数是( ) A .-6 B .-2 C .0 D .21- 【知识点】有理数的大小比较【解题过程】解: 题意可得:02126<-<-<-【思路点拨】根据两个负数比较绝对值大的反而小和0大于负数即可求解. 【答案】 C(3)在5,23,-1,+0.001这四个数中,小于0的数是 ( ) A .5 B .23C .-1D .+0.001【知识点】有理数的大小比较 【解题过程】解:在5,23,-1,+0.001这四个数中,小于0的数是 -1. 【思路点拨】根据0大于负数,正数大于0,正数大于负数即可求解. 【答案】C(4)下列四组有理数的大小比较正确的是( )A .3121->- B .11+->--C .3121< D .3121->-【知识点】有理数的大小比较 【解题过程】解: 因为623131,632121==-==-且6263> 所以3121-<-,故A 错误; 因为11,11-=+--=--,所以11+-=--,故B 错误;又C 错误;故应选D . 【思路点拨】根据有理数大小比较的法则即可求解. 【答案】D .(二)课堂设计1.知识回顾(1)绝对值的定义是什么? (2)绝对值的法则是什么? (3)数轴的三要素是什么?2.问题探究探究一有理数大小的比较法则活动①某一天我国5个城市的最低气温如图所示:(1)比较这5个城市,哪个城市的最低气温最低?是多少?哪个城市的最低气温最高?是多少?(2)你能将这5个城市的最低气温按从低到高的顺序排列吗?(3)请你将这5个数字分别在数轴上表示出来?学生举手抢答.总结:(1)数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数总小于右边的数.师问:对于正数、0和负数这三类数,它们之间有什么大小关系?两个负数之间如何比较大小?学生举手抢答.总结:有理数大小比较的法则:一般地,(1)正数大于0,0大于负数,正数大于负数;(2)两个负数比较,绝对值大的反而小.【设计意图】学生通过生活中的实际问题的大小比较,自然的引出有理数大小的比较方法,体验数学来源于生活的本质,通过小组合作和师生互动,激发学生学习热情的同时,锻炼学生的小组合作能力,分析归纳的能力等.探究二会比较有理数的大小,并能正确地使用“>”或“<”号连接★活动①:会比较有理数的大小,并能正确地使用“>”或“<”号连接例1 画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0【知识点】有理数的大小比较【数学思想】数形结合.【解题过程】解:如图所示:因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.5 4【思路点拨】画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.【答案】-3.5<-112<0<12<4<+5.练习:把如图的直线补充成一条数轴,并表示下列各数:0,-(+4),312,-(-2),|-3|,+(-5),并用“<”号连接.【知识点】有理数的大小比较. 【数学思想】数形结合.【解题过程】解:∵-5<-4<0<2<3<312,∴+(-5)<-(+4)<0<-(-2)<|-3|<312,在数轴上表示:【思路点拨】先判断各数的大小,然后确定数轴的三要素即可在数轴上表示各数的位置. 【答案】+(-5)<-(+4)<0<-(-2)<|-3|<312【设计意图】通过练习,理解用数轴比较大小的方法,体会数形结合给解题带来的方便。
1.2.4(2)绝对值---有理数比较大小一.【知识要点】1.规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序(左边的数小于右边的数),即左边的数小于右边的数。
2.有理数的大小比较:(1)正数>0, 负数<0,正数>负数;(2)两个负数,绝对值大的反而小。
二.【经典例题】1.比较大小:① -7 –3;②-3.1 -2.7 ;③|-6.5| 6; ④|-2.3| |2.3| . 2.(1)把24(1),,,035-----,用“>”连接的起来为 (2)若0,0a b ><,且a b >,用“>”把,,,a a b b --连接起来为三.【题库】【A 】1.比较-0.3,-,-的大小,正确的是( ) A .->-0.3>-B .-0.3>->-C .->-0.3>-D .->->-0.3 2.有理数a 、b 、c 在数轴上的位置如图所示,则下列结论正确的是( )(A )a >b >0>c(B )b >0>a >c (C )b <a <0<c (D )a <b <c <03. 在同一数轴上用四个点表示数,12,0.2,-2,|-3|,其中在表示0.2的点的左边的点有( )A.1个B.2个C.3个D.4个 4.有理数-2.3,0,-0.2的大小关系是( ) A.-2.3>-0.2>0B.-0.2>-2.3>0C.0>-0.2>-2.3D.0>-2.3>-0.2【B 】 1212121212b a c 01212的整数有_______________. 2.用“<”“=”或“>”号填空:-2_____0 -(+5) _____-(-|-5|)3.把下列各数在数轴上表示出来,并用“>”号把它们连接起来.(4分)1 12 , -4.5 0 5.3-4.在有理数中,有( )(A )最大的数 (B )最小的数 (C )绝对值最大的数 (D )绝对值最小的数5.用“>”“<”“=”号填空:(1)-0.02 1;(2)5443;(3)722- -3.14(4)⎪⎭⎫ ⎝⎛--43 ()[]75.0-+- 6.用“<”“=”或“>”号填空:-2_____0 _____ -(+5) _____-(-|-5|) 7. 下列各式中正确的是( ) A.16--﹥0 B.2.0 ﹥2.0 C.74- ﹥75- D.6- ﹤0【C 】1.已知a.b 为有理数,且a <0,b >0,|b|<|a|,则a ,b ,﹣a ,﹣b 的大小关系是( )A.﹣b <a <b <﹣aB.﹣b <b <﹣a <aC.a <﹣b <b <﹣aD.﹣a <b <﹣b <a2.如果有理数a 、b 、c 在数轴上所对应的点如图所示,用“<”连接-a 、b 、c ,那么正确的是( )A.b<c<-aB.-a<b<cC.b<-a<cD.c<b<-a3.(5分)把表示下列各数的点画在数轴上,再按从大到小的顺序,用">"号把这些数连接起来:5-,3-,5.2-,)1(--,215,0 98-109-【D 】1.若a 是有理数,则4a 与3a 的大小关系是( )A. 4a >3aB. 4a =3aC. 4a <3aD.不能确定2.比较大小:7665--,-100 0.01,99a 100a (a<0) 3.写出一个分数,比41-小且比31-大,则这个分数是 。
1.2.4绝对值(2课时)教学目标:1、理解两点间的距离概念及其几何意义,通过从数形两个方面理解距离的意义,进一步了解数形结合的思想方法.2、会求两点间的距离,知道距离和一点,会求另一点.3、掌握两点间的距离公式.4、通过对两点间距离公式的探索,,培养学生浓厚的学习兴趣,提高学生学数学的好奇心和求知欲.教学重点与难点:重点:两点间的距离.难点:应用距离公式解决问题。
.教学方法:通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索. 教学环节的设计与展开,以问题解决为中心,使教学过程成为在教师指导下的一种自主探索的学习活动过程,在探索中形成自己的观点.教学设计:一、引入新课问题1:数轴上到原点距离为3的数有几个?分别是什么?2.数轴上到-2点距离为3的数有几个?分别是什么?思考:两点,两点间的距离该建立一种怎样的关系呢?二.探究新知:自主学习:阅读下面材料并回答问题:点A,B在数轴上分别表示实数a,b,A,B两点间的距离表示为AB,(1)当A,B两点中有一点在原点时,不妨设点A在===-如图1,AB OB b a b(2)当AB两点都不在原点时,如图2,点A,B都在原点的右边,=-=-=-=-A B O B O A b a b a a b(3)当AB 都在原点的左边时,如图3,()AB OB OA b a b a a b =-=-=---=-(4)当AB 在原点的两边,如图4AB OB OA b a b a a b =+=+=-+=-综上,数轴上A,B 两点之间的距离:AB a b =-请回答:①数轴上表示2和5的两点之间的距离是_________.数轴上表示-2和-5的两点之间的距离是_________.数轴上表示1和-3的两点之间的距离是_________.②数轴上表示x 和-1的两点A,B 之间的距离是__________. 如果2,AB =那么x 为_________. ③当代数式12____.取最小值时,相应的的取值范围是x x x ++-(2)12+x-3+.....+x-1997的最小值时.x x -+-小结归纳:12312222,,....,........1n +121设是数轴上依次排列的点表示的有理数.当为偶数时,若则x-a 的值最小. 当n 为奇数时,若x=a ,则x-a 的值最小.n n n n a a a an n a x a x a x a x a x a +≤≤+-++-+-++-三:巩固新知1.21 2 (1)1 2....(1)求解方程:x+1x x x x =+=≥-+=≤-1,1.设y=x-1则下面四个结论正确的是____.A. y 没有最小值B.只有一个x 使y 取最小最值.C.有无限个x (不止一个)使y 取最小值D.有无穷多个x 使y 取最小值.x ++232. x+1的最小值是___.x x +-+-233. x+1+....+x-6+x-2000的最小值是___.x x +-+-()4.15,,,,,工作流水线上顺次排列个工作台一只工具箱应该放在何处,才能使工作台上操作机器的人取工具所走的路程最短?(2)如果工作台由5个改为6个,那么工具箱应如何放置能使6个操作机器的人取工具所走的路程最短?(3)当流水线上有n 个工作台时,怎样放置工具箱最适宜?思考:如何建立数学模型?A B C D E四.能力拓展:1.如图所示,若a 的绝对值是b 的绝对值的3倍,则数轴的原点在_____点或_____点(填“A,BC,D ”)(huangP25) 2.,50,非零整数满足所有这样的整数组(m,n)共有_____组.m n m n +-=____3 如果a,b,c 是非零有理数,且a+b+c=0,a 那么的所有可能值为abc abcb c abc +++ A.0 B.1或-1 C.2或-2 D.0或-22.,50,非零整数满足所有这样的整数组(m,n)共有_____.A.0B.1或-1C.2或-2D.0或-2m n m n +-=五.汇总绝对值的易错点:1.一个数的绝对值等于其本身,则这个数一定是正数。
1.2.4绝对值(2):有理数比较大小:(1)利用数轴比较大小:右边的大于左边(2)正数>0.0>负数,正数>负数;负数与负数比较,绝对值大的反而小。
自主学习二:1.阅读p12页总结判断有理数大小的方法。
例1:比较下列数的大小。
(1)—0.7和—70 (2)8-09和(3)43和(4)—(—6)和—|—6|(5)7887—和—(6)56-,45-,115-练一练:比较下列各数的大小。
(1)—9.1和—9.099 (2)—8和|—8| (3)—|—3.2| 和—(+3.2)(4)5768—和—1.在7,-6,-14,0,-23,0.01中,绝对值小于1的数是________. 2.绝对值最小的有理数是_______,绝对值最小的负整数是________.3.│-2005│的倒数是________.4.(1)表示负数的点都在原点______侧;绝对值越大的负数,•表示它离原点就越________,因此,两个负数,绝对值大的反而_______;(2)大于-2且小于7的整数是______,其中偶数是_______.(3)相反数大于-3的正整数是________.(4)绝对值大于2且小于7的整数有_______.5. 绝对值小于π的整数有______________________6. 当0a >时,a =_________,当0a <时,a =_________,7. 如果3a >,则3a -=__________,3a -=___________.8. 若1xx =,则x 是_______数;若1xx =-,则x 是_______(选填“正”或“负”)数;9.设a 是最大负整数的相反数,b 是最小自然数,•c•是绝对值最小的有理数,•则a 、b 、c 三个数的和为( )A .1B .0C .-1D .210.下列判断,正确的是( )A .若│a │=│b │,则a=bB .若│a │>│b │,则a>bC .若│a │<│b │,则a<bD .若a=b ,则│a │=│b │11.设a 是实数,则|a|-a 的值( )A 、可以是负数B 、不可能是负数C 、必是正数D 、可以是正数也可以是负数12.如果甲数的绝对值大于乙数的绝对值,那么 ( )A 、甲数必定大于乙数B 、甲数必定小于乙数C 、甲、乙两数一定异号D 、甲、乙两数的大小,要根据具体值确定13.在有理数-π,0,│-(-313)│,-│+1000│,-(-5)中最大的数是( ) A .0 B .-(-5) C .-│+1000│ D .-π14. 比较-0.5,-15,0.5的大小,应有( )A .-15>-0.5>0.5 B .0.5>-15>-0.5 C .-0.5>-15>0.5 D .0.5>-0.5>-15 15. 2--的倒数是( )A 、2 B 、12 C 、12- D 、-2 16. 若a 与2互为相反数,则|a +2|等于( )A 、0B 、-2C 、2D 、417. 实数a 、b 在数轴上的位置如图所示,那么化简|a-b|-a 的结果是A 、2a-bB 、bC 、-bD 、-2a+b18.把-3.5,│-2│,-1.5,0的绝对值,313,-3.5•的相反数按从大到小的顺序排列起来.19.比较下列各组数的大小.(1)-34与-0.76; (2)-310与-311; (3)-313与-3310;(4)-│-3.5│与-[-(-3.5)]. (5)-(-5)与-│-5│; (6)-(+3)与0;(7)-45与-│-34│; (8)-π与-│3.14│.自主探究:(针对性练习)1.已知420x y -++=,求x ,y 的值b O a2.(信息处理题)已知a b 、互为相反数,c d 、互为倒数,m 的绝对值等于2,求2a b m cd a b c++-++的值.3.(章节内知识点综合题)有理数a b c 、、在数轴上的位置如图所示,化简0a b c -+--0b ac4.已知有理数a 为正数,b 、c 为负数,且│c │>│b │>│a │,用“<”把a 、b 、•c 、-a 、-b 、-c 连接起来.5..设a=20022003,b=20032004,c=20042005,比较a ,b ,c 的大小.(提示:用整数1分别减去a ,b ,c )6.比较-58与0.626363.7.设a=-19199191,b=-1991,试比较a ,b 的大小.8.(课标创新题)已知a b c 、、都是有理数,且满足a b c a b c ++=1,求代数式:6abc abc-的值.自我检测:一、填空题1.一个数a 与原点的距离叫做该数的_______.2.若a<0,b<0,且│a │>│b │,那么a ,b 的大小关系是________.3.-|-76|=_______,-(-76)=_______,-|+31|=_______,-(+31)=_______, +|-(21)| =_______,+(-21)=_______. 4._______的倒数是它本身,_______的绝对值是它本身.5.a+b=0,则a 与b_______.6.若|x|=51,则x 的相反数是_______. 7.若|m -1|=m -1,则m_______1.若|m -1|>m -1,则m_______1.若|x|=|-4|,则x=_______.若|-x|=|21 |,则x=_______. 二、选择题1.|x|=2,则这个数是( )A .2B .2和-2C .-2D .以上都错2.|21a|=-21a ,则a 一定是( ) A .负数 B .正数 C .非正数 D .非负数3.一个数在数轴上对应点到原点的距离为m ,则这个数为( )A .-mB .mC .±mD .2m4.如果一个数的绝对值等于这个数的相反数,那么这个数是( )A .正数B .负数C .正数、零D .负数、零5.下列说法中,正确的是( )A .一个有理数的绝对值不小于它自身B .若两个有理数的绝对值相等,则这两个数相等C .若两个有理数的绝对值相等,则这两个数互为相反数D .-a 的绝对值等于a三、判断题1.若两个数的绝对值相等,则这两个数也相等.( )2.若两个数相等,则这两个数的绝对值也相等.( )3.若x<y<0,则|x|<|y|. ( )四、解答题1.若|x -2|+|y+3|+|z -5|=0,计算:x ,y ,z 的值.2.若2<a<4,化简|2-a|+|a -4|.3.(1)对于式子|x|+13,当x等于什么值时,有最小值?最小值是多少?(2)对于式子2-|x|,当x等于什么值时,有最大值?最大值是多少。
1.填空:绝对值最小的有理数是;绝对值最小的负整数是;最大的负整数是。
2.求大于- 4并且小于3.2的所有整数。
3.将有理数0,-3.14,- 227,2.7,-4,0.14按从小到大的顺序排列,用“< ”号连接起来.(学生独立完成,引导学生借助数轴解决问题)五、能力提高1、若a>0,b<0,且|a|<|b|,则你能比较a、b、-a、-b这四个数的大小吗?【新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力,当多个有理数比较大小时,借助数轴,渗透数形结合的思想。
】思考:还有别的方法吗?(个别同学可能会想到用特殊值代入法解决,鼓励学生积极思考,大胆发言)2、已知|x|=3,|y|=4,且x<y,求x+y的值学生讲解,师补充,规范解答步骤。
(课件呈现)结合绝对值的有关知识,解决问题,本题的关键是分类讨论。
扩展:如果将x<y这个条件去掉,结果是怎样的呢?【渗透分类讨论的思想】六、总结升华、反思提升同学们,请你回想一下,这节课你有什么收获?学生说收获。
【学生对本节课进行知识梳理,巩固教学目标。
】板书设计:有理数的大小比较例题:(1)- (-1) 和 -(+2)一、数轴比较法:在数轴上表示的两个数,右边的数总比左边的数大。
学生板演区域二、直接比较法:1、正数大于0,0大于负数,正数大于负数。
2、两个负数比较大小,绝对值大的数反而小。
作业设计最佳解决方案个基础:1.有理数a、b、c在数轴上的位置如图所示,则a,b,c间的大小关系是______.2.在有理数-π,0,│-(-313)│,-│+1000│,-(-5)中最大的数是()A.0 B.-(-5) C.-│+1000│ D.-π3.若a<0,b<0,且│a│>│b│,那么a,b的大小关系是___________。
4.下列判断,正确的是()A.若│a│=│b│,则a=b B.若│a│>│b│,则a>bC.若│a│<│b│,则a<b D.若a=b,则│a│=│b│4.有理数a在数轴上对应的点如图所示,则a,-a,-1的大小关系是()A.-a<-1<aB. -a<a<-1C.a<-1<-aD.-1<a<-a综合:5.比较下列每对数大小:(1)-(-5)与-│-5│;(2)-(+3)与0;(3)-45与-│-34│;(4)-π与-│3.14│.拓展:6.已知有理数a为正数,b、c为负数,且│c│>│b│>│a│,用“<”把a、b、•c、-a、-b、-c连接起来.答案:1、a>b>c; 2、B ; 3、a<b ; 4、C; 5、(1)-(-5)> -│-5│;(2)-(+3)< 0;(3)-45< -│-34│;(4)-π< -│3.14│ 6、-c>-b>a>-a>b>c教学反思:本节课联系小学及课本内容,把两个有理数的大小比较进行系统的概括,体验出两个有理数比较大小的方法。
绝对值一、新课导入1.课题导入:看教材第12页未来一周天气预报图,你能将这一周的温度按从低到高的顺序排列吗?这节课我们学习有理数的大小比较.2.学习目标:(1)进一步理解绝对值的意义.(2)会进行有理数的大小比较.3.学习重、难点:重点:进一步理解绝对值的意义;掌握有理数的大小比较方法.难点:两个负数的大小比较方法.二、分层学习1.自学指导:(1)自学内容:教材第12页“思考”到教材第13页第4行的内容.(2)自学时间:8分钟.(3)自学要求:借助数轴来归纳比较两个数大小的方法,看数轴上的点表示的数的大小有什么规律.(4)自学参考提纲:①说出数轴上各点所表示的数的大小顺序.a.把温度按从低到高的顺序排列后,在温度计上所对应的点是从下到上的;按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序应该是从左到右的.b.数学中规定,在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.②根据数轴上的点表示数的特征(原点右边的数表示正数,原点左边的数表示负数)和上述规定(即左边的数小于右边的数),可得到有理数的大小比较法则一:正数大于0,0大于负数,正数大于负数.对于两个负数,在数轴上的对应点离原点越远,说明这个数的绝对值越大(填“大”或“小”),表示该数的点越往左(填“左”或“右”),因此可以得到有理数的大小比较法则二:两个负数,绝对值大的反而小.③填空:(填“>”或“<”)-100<0 -50<12 0<0.0001④-78和-89这两个负数谁大?怎样来比较?解:∵-|78|<|-89|,∴-78>-89⑤你能总结两个有理数的大小比较的基本思路和方法吗?相互交流一下.2.自学:同学们可结合自学指导进行自学和交流探讨.3.助学:(1)师助生:①明了学情:巡视课堂、关注学生的自学过程,了解学生的学习方法和进度,收集自学中存在的问题。
②差异指导:a.指导部分未找到有理数的大小比较方法的学生观察数轴上两个点表示的数的位置与它们的大小关系.b.引导学生总结有理数大小比较方法:数轴比较法;绝对值比较法.(2)生助生:小组内交流并解决一些自学中的疑难问题.4.强化:(1)总结交流:①数轴上的点的位置与它表示的数的大小特点.②有理数的大小比较法则.(2)练习:比较下列各对数的大小:-3和-5;3和-5;-2012和0.001;+1112与+1415;-35和-34解:-3>-5;3>-5;-2012<0.001;+1112<+1415;-35>341.自学指导:(1)自学内容:教材第13页例题.(2)自学时间:5分钟.(3)自学要求:注意同号两数、异号两数大小比较的方法以及看课本是如何利用数轴来比较两个有理数的大小的.(4)自学参考提纲:①比较两数大小时,如果有括号和绝对值时,怎么办?先将括号和绝对值化简,再比较大小.②异号两数大小怎样比较?同号两数大小怎样比较?若两数异号,则正数大于负数;若两数同号,先考虑它们的绝对值.③比较下列各对数的大小.-(-2)和-(+3);-(-0.8)和-4;-1112和-1415解:-(-2)>-(+3);-(-0.8)<-4;-1112>-14152.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:a.了解学生对含有括号、绝对值的数的大小比较的思考和处理方法.b.对于两个负分数比较大小他们采用的方法是否正确.c.解题过程是否规范.②差异指导:指导个别学生归纳两个有理数的大小比较的基本思路和应采取的方法. (2)生助生:学生在小组交流中相互帮助解决疑难问题.4.强化:(1)比较两个数大小的方法——“两看”:异号看正负,同号看绝对值.(2)练习:比较下列各对数的大小:①-2.5和-|-2.25|②-821和+(-37)③-π和-3.14159④-(-3)和-|-3|解:①-2.5<-|-2.25|;②-821>+(-37);③-π<-3.14159;④-(-3)>-|-3|三、评价1.学生的自我评价(围绕三维目标):交流自己在本节课学习中的收获和存在的不足.2.教师对学生的评价:(1)表现性评价:指出大家学习的成果和不到之处,结合好坏典型作对比分析评价. (2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时先借助数轴来直观比较有理数的大小,进而由浅入深地通过法则比较大小.在循序渐进的过程中,培养学生动脑思考的习惯,并体会数形结合的重要思想.教学中,给学生独立思考与合作交流的空间,加深理解,最后通过练习加以巩固.作业一、基础巩固(70分)1.(10分)正数>0,负数<0,正数>负数;两个负数比较大小,绝对值大的反而小.2.(10分)比较大小:-3<0;-3.14>-π;-(-0.0125)>-(+125)3.(10分)下面四个不等式中,正确的是(D)A.|-2|>|-3|B.|2|>|3|C.|2|>|-3|D.|-2|<|-3|4.(20分)下面选项中各数的大小比较,其结果正确的是(A)A.-12<-13<14 B.-12<14<-13C. 14<-13<-12 D.-13<-12<145.(20分)将下列各数按从小到大的顺序排列,并用“<”连接.-0.25,+2.3,-0.15,0,-23,-32,-12,0.05.解:-32<-23<-12<-0.25<-0.15<0<0.05<+2.3二、综合应用(20分)6.(10分)某年我国人均水资源比上年的增幅是-5.6%,后续三年各年比上年的增幅分别是-4.0%,13.0%,-9.6%,这些增幅中哪个最小?增幅是负数说明什么?解:-9.6%最小;人均水资源不增反降.7.(10分)(1)-1与0之间还有负数吗?-12与0之间呢?如有,请举例.(2)-3与-1之间有负整数吗?-2与2之间有哪些整数?(3)有比-1大的负整数吗?(4)写出3个小于-100并且大于-103的数.解:(1)有,-12;有,-14;(2)有;-1,0,1;(3)没有;(4)-101,-101.5,-102(答案不唯一).三、拓展延伸(10分)8.(10分)已知A.b为有理数,且a<0,b>0,|a|>|b|,则(A)A.a<-b<b<-aB.-b<a<b<-aC.-a<b<-b<aD.-b<b<-a<a6.1 平方根第1课时算术平方根一、导学1.导入课题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?你是怎样求的?这个问题就是我们今天要学习的内容:算术平方根(板书课题).2.学习目标知道什么是算术平方根及其符号表示方法,会求一个数的算术平方根.3.学习重、难点:重点:算术平方根的意义及其符号表示.难点:估计一个含有根号的数的大小.4.自学指导:(1)自学内容:课本P40的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读课文,重要的地方做好圈点标记,并注意例1中算术平方根的求解方法与格式.(4)自学参考提纲:①完成课本上的填表.②什么叫算术平方根?0的算术平方根是0.a的算术平方根,读作根号a,其中a叫被开方数,由算术平方根的定义知a≥0,④仿照例题求下列各数的算术平方根:0.0025 81 32答案:上面3个小题答案依次为:0.05,9,3⑤求下列各式的值:答案:上面3个小题答案依次为:1,35,2.⑥观察例1及④、⑤中各题的结果可以发现:被开方数越大,相应的算术平方根越大,这个结论对所有正数都成立,即若a>b>0二.自学同学们可结合自学指导进行学习.三.助学1师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应指导.2生助生:小组内同学间互相交流、纠错.四.强化1算术平方根的概念及其表示方法. 2a ≥0(a ≥0).3求一个数的算术平方根的方法.4若a>b>0,则a >b ;反过来也成立.五、评价1.学生的自我评价:学生代表交流学习目标的达成情况和学习感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现(态度、方法和效果等)进行总结和点评. (2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时采用观察、思考、讨论等探究活动归纳得出相应结论,使学生感受到算术平方根的概念与以前学过的求一个数的平方之间的联系.教学时应注意让学生通过探究活动经历一个由特殊到一般的认识过程,从而更好地接受新知识.(时间:12分钟满分:100分)一、基础巩固(70分)1.(15分)(1)100表示的意思是100的算术平方根,其值为10.(200的算术平方根,其值为0.(324 ()表示的意思是(-4)2的算术平方根,其值为4.2.(10分)4的算术平方根是2,3,32.3.(10=0.2236, =22.36.4.(20分)求下列各数的算术平方根:(1)81 (2)2564 (3)0.04 (4)102 解:(1)∵92=81,∴81=9.(2)∵(58)2=256458.(3)∵0.22=0.04=0.2.(410.5.(15分)求下列各式的值:(1(2(2解:(1(283.(375二、综合运用(20分) 6.(10分)小文房间的面积为10.8m 2,房间地面恰巧由120块相同的正方形地砖铺成,每块地砖边长是多少?解:设每块地砖的边长是xm.则120x 2=10.8,x=0.3.答:每块地砖的边长是0.3m.7.(10分)国际足球比赛的足球场长在100m 到110m 之间,宽在64m 到75m 之间,现有一个长方形足球场,其长是宽的1.5倍,面积是6337.5m 2,问这个足球场是否能用作国际比赛球场?解:设这个长方形足球场的宽为xm,则长为1.5xm ,依题意得x ·1.5x=6337.5, x 2=4225,解得x=65,x=65,65×1.5=97.5(m )答:这个足球场不能用作国际比赛球场.三、拓展延伸(10分)8.计算:23= ,27.0= ,20= ,2)6(-= ,2)43(-= . (1)根据计算结果,回答2a 一定等于a 吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:2π)-(3.14.解:依次填:3,0.7,0,6,43.(1)2a 不一定等于a ,2a =|a|.(2)原式=|3.14-π|=π-3.14.第一章有理数1.1 正数和负数【知识与技能】1.了解正数与负数的产生是实际生活的需要.2.会判断一个数是正数还是负数.3.会用正负数表示互为相反意义的量.【过程与方法】通过对正负数的学习,培养学生应用数学知识的意识、训练学生运用新知识解决实际问题的能力.【情感态度】1.通过教师、学生双方的教学活动,激发学生学习的兴趣,让学生体验到数学知识来源于生活并为生活服务.2.通过对正负数的学习,渗透对立、统一的辩证思想.【教学重点】会判断正数、负数,运用正负数表示相反意义的量,理解0表示量的意义.【教学难点】负数的引入.一、情境导入,初步认识数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为两类:自然数(正整数和零)、分数(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,…….为了表示半小时、四元八角七分、……,我们需用到分数12和小数4.87、…….为了表示“没有人”、“没有羊”、……,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数或分数、小数表示.二、思考探究,获取新知问题某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚,因为它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8844.43m,吐鲁番盆地低于海平面155m,“高于”和“低于”其意义是相反的.又如,某仓库昨天运进货物812吨,今天运出货物412吨,“运进”和“运出”,其意义是相反的.同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充.【教学说明】数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8844.43m,记作+8844.43m;低于海平面155m,记作-155m;运进货物812吨,记作+812吨;运出货物412吨,记作-412吨.……【归纳结论】为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它们相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动1每组同学之间相互合作交流,一同学任说有相反意义的一个量,由对方用正负数表示.活动2举出几对具有相反意义的量,并分别用正、负数表示.三、典例精析,掌握新知例1教材第3页例题.【教学说明】此例为教材中的例题,在教学过程中,应让学生独立思考后举手回答题中的问题,教师要让学生体会“负”与“正”是相对的,是表示相反意义的量.例题中,增加用正数表示,减少用负数表示.教材对话框中,增长-6.4%就是减少6.4%;当这年的商品进出口总额和上年的商品进出口总额相同时,增长率为0.在解答完这个例题之后,教师可引导学生做教材第3页练习.例2所有的正数组成正数集合,所有的负数组成负数集合.把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:-11,4.8,+73,-2.7,1/6,7/12,-8.12,-3/4【教学说明】此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用图表示集合,也可以用大括号表示集合.在解答这个例题后,教师可让学生阅读教材第4页上面的内容,并做下面的练习.四、运用新知,深化理解1.填空题:(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.(2)如果4年后记作+4,那么8年前记作 .(3)如果运出货物7吨记作-7吨,那么+100吨表示 .(4)一年内,小亮体重增加了3kg,记作+3kg,小阳体重减少了2kg,则小阳增长了 .2.任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:正数集合:{ ……},负数集合:{ ……}.【教学说明】教师让两位同学口答两题,给予鼓励.【答案】略五、师生互动,课堂小结通过这节课的学习,你有什么收获和体会?【教学说明】引导学生共同归纳:由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.1.布置作业::从教材习题1.1中选取.2.完成练习册中本课时的练习.3.选做题:(1)北京一月份的日平均气温大约是零下3℃,用负数表示这个温度.(2)某地图上的一个湖中标着-12m,这表明该湖的湖面与海平面相比的高度是怎样的?(3)在下列各数中,哪些是正数?哪些是负数?-16,0.004,+7/8,-1/2,3/5,25.8,-3.6,-4,9651,-0.1(4)如果-50元表示支出50元,那么+400元表示什么?本课时内容是学生在小学学过的数的基础上,通过用简洁清楚的方式表示实际生活中的相反意义的量,引入负数.让学生感到负数引入的必要性,同时感受到数学符号的优越性.引入负数后,进而给出正数、负数的描述性定义,通过练习具体认识正、负数在实际中的应用.教学的安排,强调自主学习,注重交流合作,从自主探索中获得新知和数学活动的体验.鼓励学生间用语言表述探究活动中的所思所得,互相评点,教师适时总结归纳.。