1.2.4绝对值2
- 格式:ppt
- 大小:246.00 KB
- 文档页数:13
第一章 有理数1.2.4绝对值(2)有理数大小比较 (课时序数7课时)一.根据课题预示本课学习目标;1.会根据数轴比较两个有理数2.会运用比较绝对值的大小比较两个负数的 .二.情境引入1.我地冬季某一天的8时的气温为-1℃,12时的气温为4℃,23时的气温是-3℃.在这个问题中气温最高的是 .气温最低是 ,请你用”>”表示出这三个时间段的温度关系 . 2.请你画一个数轴,并把上题中三个不同时段的温度表示在数轴上.然后观察数轴上的数的特点是;它右边的数总比它左边的数 .3.由2题的数轴你发现了数轴上的数的特点是:(1)数轴上右边的数总比它左边的数 ;(2)正数大于0,0大于 正数大于 (3)两个负数比较大小 .三.新知识导学:由上面问题的探究我们很容易比较,两个正,正数和0,正数和负数,负数和0的大小,但两负数比较大小就不是那么简单了.要想掌握它请看下面例子对两个负数比较大小的步骤.例1.比较下列各对数和的大小1.-(+3)和-(-2); 2.-3和-1.5 3.-15853和- 解:1.因为-(+3)=-3-(-2)=2而-3<2所以-(+3)<-(-2)老师语:带有双符号的数比较大小时注意先化简再比较;两个负数比较大小(1)先求这两个负数的绝对值(2)比较绝对值的大小(3)再落到原两个负数比较大小四.有效训练1.比较下列各对数和的大小(1). -(-6)和-(+4) (2). -7和-9 (3). -65和-322、已知∣a ∣=2,∣b ∣=2, ∣c ∣=4.且有理数a,b,c 在数轴上的位置如下图所示,试计算a+b+c 的值。
五.课后感1.有理数比较大水的法则是:正数大于 和 ;0大于 ;两个负数比较 . 2.两个负数比较大小的三个步骤是;(1) (2)(3)作业设计:一. 填空题1、(1)∣+51∣= ;∣3.5∣= ;∣0∣= ; (2)-∣-3∣= ;-∣+3.7∣= ; (3)∣-8∣+∣-2∣= ;∣-6∣÷∣-3∣= ;∣6.5∣-∣-521∣= . 2、-321的绝对值是 ;绝对值等于321的数是 ,它们互为 。
1.2.4 绝对值(二)1.理解、掌握有理数大小比较法则;2.能熟练运用有理数大小比较法则,结合数轴比较有理数的大小,能利用数轴对多个有理数进行有序排列;3.体验运用直观知识解决数学问题.重点:运用有理数大小比较法则,借助数轴比较两个有理数的大小; 难点:利用绝对值比较两个负数的大小.一、温故知新1.比较下列各组数的大小: ①2__<__3;②34__>__23;③12__>__0;④0__<__0.001. 2.引入负数后,对于任意有理数(如-2和-1,-3和0,-2和2)怎样比较大小呢?二、自主学习阅读思考,发现新知.阅读P12,你有什么发现吗? 讨论交流在数轴上表示的两个数,右边的数总要大于左边的数.也就是: (1)正数大于0,负数小于0,正数大于负数; (2)两个负数,绝对值大的反而小. 自学例题 P13 (教师指导) 重点书写格式示范指导 三、拓展提高例1 写出3个小于-1并且大于-2的数. 如:-1.2,-1.5,-1.8.例2 已知|x |=6,|y |=5,且x <y ,求x ,y 的值. 解:∵|x |=6,|y |=5,又∵x <y , ∴x =±6,y =±5.∴x =-6,y =±5.1.比较下列各对数的大小:-3和-5; -2.5和-∣-2.25∣. -3>-5; -2.5<-|-2.25|.1.比较有理数大小的方法有两种:方法一:利用数轴,把数用数轴上的点表示出来,然后根据“数轴上左边的点所表示的数比右边的点所表示的数小”来比较.方法二:利用比较有理数大小的法则“正数大于0,0大于负数,正数大于负数,两个负数,绝对值大的反而小”来进行.2.在比较有理数的大小前,要先化简,从而知道哪些是正数,哪些是负数.有理数的减法法则l .有理数的减法法则是:减去一个数等于加上这个数的___________, 用字母表示成:_______________________________ 2.下列括号内应填什么数?(1)(-2)-(-5)=(-2)+(______); (2)0-(-4)=0+(______); (3)(-6)-3=(-6)+(______); (4)1-(+37)=1+(______). 3.温度3℃比-7℃高_______;温度-8℃比-2℃低_______.4.海拔-200m 比300m 高________;从海拔250m 下降到100m ,下降了________. 5.数轴上表示数-3的点与表示数-7的点的距离为________.6.85减去1的差的相反数等于________;352-的相反数为________.7.3--比-(-3)小________;比-5小-7的数是________;比0小-3的数是________.8.下列结论中正确的是( )A .两个有理数的和一定大于其中任何一个加数B .零加上一个数仍得这个数C .两个有理数的差一定小于被减数D .零减去一个数仍得这个数8.下列说法中错误的是( )A .减去一个负数等于加上这个数的相反数B .两个负数相减,差仍是负数C .负数减去正数,差为负数D .正数减去负数,差为正数9.下列说法中正确的是( ) A .减去一个数等于加上这个数 B .两个相反数相减得OC .两个数相减,差一定小于被减数D .两个数相减,差不一定小于被减数10.下列说法正确的是( ) A .绝对值相等的两数差为零 B .零减去一个数得这个数的相反数C .两个有理数相减,就是把它们的绝对值相减D .零减去一个数仍得这个数 11.差是-7.2,被减数是0.8,减数是( )A .-8B .8C .6.4D .-6.412.若0>a ,且ba >,则b a -是( )A .正数B .正数或负数C .负数D .013.计算:(1)(-5)-(-3); (2)0-(-7); (3)(+25)-(-13); (4)(-11)-(+5); (5)12-21;(6)(-1.7)-(-2.5); (7)⎪⎭⎫ ⎝⎛--2132; (8)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-3161; (9)()8.1546--⎪⎭⎫⎝⎛-.11 有理数的混合运算1.进一步掌握有理数的运算法则和运算律.2.使学生能够熟练地按有理数的运算顺序进行混合运算.重点有理数的混合运算. 难点准确地掌握有理数的运算顺序和运算中的符号问题.一、复习导入1.指名学生计算:(1)(-2)+(-3); (2)7×(-12); (3)17-(-32);(4)(-2)3; (5)-23; (6)021; (7)(-4)2;(8)(-2)4; (9)-100-27; (10)1×(-2); (11)-7+3-6; (12)(-3)×(-8)×25.2.教师:说一说我们学过哪些有理数的运算律. 学生:加法交换律:a +b =b +a.加法结合律:(a +b)+c =a +(b +c). 乘法交换律:ab =ba.乘法结合律:(ab)c =a(bc) 乘法分配律:a(b +c)=ab +ac.教师:前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有加、减、乘、除、乘方的混合运算,按怎样的顺序进行计算?二、探究新知教师:同学们,请观察下面的算式里有哪几种运算?3+50÷22×(-2)-1.学生:这道算式里,含有有理数的加、减、乘、除、乘方多种运算. 教师:对的!像这种运算,我们称为有理数的混合运算. 课件出示: 计算:(1)-50÷2×4; (2)6÷(3×2); (3)6÷3×2;(4)17-8÷(-2)+4×(-3);(5)32-50÷22×232-1.学生独立完成,教师点评,并提出问题:通过上面的练习,你能总结出有理数混合运算的顺序吗?学生分小组讨论后回答,教师点评,并进一步讲解: 有理数混合运算的运算顺序:(1)先算乘方,再算乘除,最后算加减; (2)同级运算,按照从左至右的顺序进行;(3)如果有括号,先算小括号里面的,再算中括号里面的,最后算大括号里面的. 注意:①加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方叫做第三级运算.②可以应用运算律适当改变运算顺序,使运算简便.③进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法.课件出示:计算:3×(8-3)÷1×13.要求学生写出解答过程,教师点评,并进一步讲解:本题按常规运算顺序,应先算小括号里的减法,运算较繁,观察算式中的数字特征,可发现首尾两数互为倒数,根据这一特征,抓住算式的结构特点及数与数之间的关系,利用运算律,适当改变运算顺序.解:原式=3×1×13×(8-3)=1×(8-3)=8-3=5.三、举例分析例1(课件出示教材第65页例1)要求学生独立完成并汇报答案,教师讲评. 例2(课件出示教材第65页例2)要求学生用不同的方法解答,教师讲评. 四、练习巩固1.教材第66页“随堂练习”.2.底面半径为10 cm ,高为30 cm 的圆柱形水桶中装满了水.小明先用桶中的水将2个底面半径为3 cm ,高为 5 cm 的圆柱形杯子倒满,再把剩下的水倒入长、宽、高分别为50 cm ,20 cm 和20 cm 的长方体容器内.长方体容器内水的高度大约是多少厘米?(π取3,容器的厚度不计)五、小结1.有理数混合运算的顺序是什么?2.通过本节课的学习,你还有什么不明白的地方吗? 六、课外作业教材第67页习题2.16第1,2题.本节课主要教学有理数的加、减、乘、除、乘方混合运算.学生早已熟练掌握了运算顺序“先乘除后加减”. 从学生已有的知识出发,探究新知识就比较简单.激发学生主动参与,把学生的注意力和思维活动调节到积极状态,培养学生思维的灵活性.在教学过程中,通过题目的训练,由浅入深,让学生合作交流,总结出有理数混合运算的顺序,进一步理解有理数混合运算顺序的正确性.注重学生的参与,并适当鼓励,让他们感受成功的喜悦,从而激发学习的动力.教完本节课后,我发现学生在计算有理数混合运算时主要存在两个问题:一是运算顺序出现问题;二是混淆了加和乘的运算,尤其是两个负数相加经常和乘法中的负负得正弄乱,异号相加也出现问题.究其原因还是因为没有完全熟练,没有达到理解进而形成直觉.希望通过不间断的练习加强重现的机会,让学生逐步加深理解进而形成直觉.。
人教版初中七年级数学第一单元有理数1.2.4 第二课时 有理数的大小比较一、教学目标(一)学习目标1.理解并掌握有理数大小的比较的方法;2.会比较有理数的大小,并能正确地使用“>”或“<”号连接; 3.通过对有理数大小比较方法的推理,培养学生的数学推理能力.(二)学习重点运用绝对值的知识比较两个负数的大小;(三)学习难点有理数大小比较的推理.二、教学设计(一)课前设计 1.预习任务(1)在数轴上,右边的数总比左边的数大; (2)正数大于0,负数小于0,正数大于负数; (3)两个负数比较,绝对值大的反而小. 2.预习自测(1)有理数a 在数轴上对应的点如图所示,则a ,a -,-1的大小关系是 ( )A .1-<<-a aB .a a <-<-1C .a a -<-<1D .1-<-<a a【知识点】有理数的大小比较 【数学思想】数形结合【解题过程】解:由数轴可知:a a -<-<1【思路点拨】根据数轴上的点,左边的数总比右边的数小即可求解. 【答案】Ca(2)下列四个数中,最大的数是( ) A .-6 B .-2 C .0 D .21- 【知识点】有理数的大小比较【解题过程】解: 题意可得:02126<-<-<-【思路点拨】根据两个负数比较绝对值大的反而小和0大于负数即可求解. 【答案】 C(3)在5,23,-1,+0.001这四个数中,小于0的数是 ( ) A .5 B .23C .-1D .+0.001【知识点】有理数的大小比较 【解题过程】解:在5,23,-1,+0.001这四个数中,小于0的数是 -1. 【思路点拨】根据0大于负数,正数大于0,正数大于负数即可求解. 【答案】C(4)下列四组有理数的大小比较正确的是( )A .3121->- B .11+->--C .3121< D .3121->-【知识点】有理数的大小比较 【解题过程】解: 因为623131,632121==-==-且6263> 所以3121-<-,故A 错误; 因为11,11-=+--=--,所以11+-=--,故B 错误;又C 错误;故应选D . 【思路点拨】根据有理数大小比较的法则即可求解. 【答案】D .(二)课堂设计1.知识回顾(1)绝对值的定义是什么? (2)绝对值的法则是什么? (3)数轴的三要素是什么?2.问题探究探究一有理数大小的比较法则活动①某一天我国5个城市的最低气温如图所示:(1)比较这5个城市,哪个城市的最低气温最低?是多少?哪个城市的最低气温最高?是多少?(2)你能将这5个城市的最低气温按从低到高的顺序排列吗?(3)请你将这5个数字分别在数轴上表示出来?学生举手抢答.总结:(1)数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数总小于右边的数.师问:对于正数、0和负数这三类数,它们之间有什么大小关系?两个负数之间如何比较大小?学生举手抢答.总结:有理数大小比较的法则:一般地,(1)正数大于0,0大于负数,正数大于负数;(2)两个负数比较,绝对值大的反而小.【设计意图】学生通过生活中的实际问题的大小比较,自然的引出有理数大小的比较方法,体验数学来源于生活的本质,通过小组合作和师生互动,激发学生学习热情的同时,锻炼学生的小组合作能力,分析归纳的能力等.探究二会比较有理数的大小,并能正确地使用“>”或“<”号连接★活动①:会比较有理数的大小,并能正确地使用“>”或“<”号连接例1 画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0【知识点】有理数的大小比较【数学思想】数形结合.【解题过程】解:如图所示:因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.5 4【思路点拨】画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.【答案】-3.5<-112<0<12<4<+5.练习:把如图的直线补充成一条数轴,并表示下列各数:0,-(+4),312,-(-2),|-3|,+(-5),并用“<”号连接.【知识点】有理数的大小比较. 【数学思想】数形结合.【解题过程】解:∵-5<-4<0<2<3<312,∴+(-5)<-(+4)<0<-(-2)<|-3|<312,在数轴上表示:【思路点拨】先判断各数的大小,然后确定数轴的三要素即可在数轴上表示各数的位置. 【答案】+(-5)<-(+4)<0<-(-2)<|-3|<312【设计意图】通过练习,理解用数轴比较大小的方法,体会数形结合给解题带来的方便。