1.2.4绝对值(第二课时) 人教新课标版
- 格式:ppt
- 大小:487.50 KB
- 文档页数:2
人教版数学七年级上册1.2.4《绝对值》教案一. 教材分析《绝对值》是人教版数学七年级上册第1章第2节的内容,本节课主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。
绝对值是数学中的一个基本概念,它在日常生活和工农业生产中有着广泛的应用。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学概念的理解和运用已经有了一定的基础。
但同时,学生对新的数学概念的接受和理解还需要一定的引导和培养。
他们对绝对值的概念和性质可能还存在一些模糊的认识,需要通过实例和练习来加深理解。
三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。
2.培养学生运用绝对值解决实际问题的能力。
3.培养学生的抽象思维能力和逻辑思维能力。
四. 教学重难点1.绝对值的概念和性质。
2.运用绝对值解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法,引导学生通过观察、思考、讨论、操作等活动,掌握绝对值的概念和性质,提高学生的动手操作能力和解决问题的能力。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
3.学生分组合作学习资料。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如温度、距离等,引导学生思考这些问题的共同特点,从而引出绝对值的概念。
2.呈现(10分钟)介绍绝对值的定义,用PPT展示绝对值的图形表示,让学生直观地理解绝对值的概念。
同时,给出绝对值的性质,让学生通过观察和思考来理解这些性质。
3.操练(10分钟)让学生分组合作,运用绝对值的性质解决一些实际问题,如求距离、计算温度等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对绝对值概念和性质的掌握程度。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)让学生思考绝对值在实际生活中的应用,如地图上的距离、股票的涨跌等。
引导学生运用绝对值的知识解决这些问题,提高学生的应用能力。
人教版七年级数学上册:1.2.4《绝对值》教学设计2一. 教材分析《绝对值》是人教版七年级数学上册第一章第二节第四个小节的内容,主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些简单的问题。
绝对值是数学中的一个重要概念,它在日常生活和工农业生产中有着广泛的应用。
二. 学情分析学生在学习《绝对值》之前,已经学习了有理数的概念,对正数、负数、零有所了解。
但是,他们对绝对值的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对绝对值的应用场景有所疑惑,需要通过生活中的实例来帮助他们理解。
三. 教学目标1.理解绝对值的概念,掌握绝对值的性质。
2.能够运用绝对值解决一些简单的问题。
3.理解绝对值在日常生活和工农业生产中的应用。
四. 教学重难点1.绝对值的概念和性质。
2.绝对值的应用。
五. 教学方法采用讲授法、实例分析法、练习法、小组合作学习法等,结合多媒体教学手段,让学生在理解绝对值的概念和性质的基础上,能够运用绝对值解决实际问题。
六. 教学准备1.PPT课件。
2.练习题。
3.生活中的实例。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,引出绝对值的概念。
例如,一个人在地图上从原点出发,走了10公里向东,又走了10公里向西,问他现在离原点有多远?引出绝对值的概念,即离原点的距离是10公里。
2.呈现(10分钟)通过PPT课件,呈现绝对值的性质,如:–绝对值是非负数。
–互为相反数的两个数的绝对值相等。
–绝对值大的数比绝对值小的数大。
同时,给出相应的例子,让学生理解和掌握这些性质。
3.操练(10分钟)让学生独立完成一些练习题,巩固对绝对值概念和性质的理解。
例如:–计算下列各数的绝对值:-5, 3, -2, 0, 4。
–如果两个数互为相反数,它们的绝对值是否相等?4.巩固(10分钟)让学生分组合作,找出生活中的其他实例,运用绝对值的概念和性质解决问题。
例如,计算两个人之间的距离,或者计算物体的位移等。
第 1 页 共 4 页 好学 阳光 向善 第 2页 共4页1.2.4 绝对值(第2课时)—有理数的大小比较【课标要求】能比较有理数的大小. 【学习目标】1. 理解有理数大小比较的法则,会比较任意两个有理数的大小,重点会比较两个负数的大小;2. 经历有理数的大小比较方法的探索及运用,培养观察、发现、概括及逻辑推理能力,体会数形结合思想及转化思想的运用;3. 通过有理数大小的推理过程,感受数学的逻辑语言,体验数学的严谨美.【使用方法与学法指导】1. 课前利用15分钟精读教材P 12 —P 13 ,结合你的收获在10分钟内完成学习活动1和学习活动2.将课本和导学案中的疑惑随时做好笔记,准备课上讨论质疑.2. 当堂检测环节,在限定10分钟内,A 层完成全部题目,B 层同学力求突破所有题目题,C 层同学至少完成基础巩固部分.——情境引入,自主学习1.某地未来一周七天的最低气温分别是2℃,0℃,-1℃,1℃,-2℃,-4℃,-5℃,(1)请你将这些气温值由低到高排列:___________________________________; (2)画数轴,将这些气温值在数轴上表示出来;(3)观察这些数在第(1)问的排列顺序与第(2)问在数轴上表示的位置有什么联系?2. 通过对问题1的解决,你能总结出任意两个有理数大小的比较法则吗?3. 比较大小:(填“>”、“<”或“=”)(1)3____-2; (2)-5____2; (3)0____-4; (4)0 ____1;(5)-2 ____-3;——较复杂的有理数的大小比较问题1:(1)-(-3)和-(+5) (2)43-和32- (3)-(+0.3)和32-思考1:两个负数比较大小的步骤是什么?学习活动2学习活动1第 3 页 共 4 页 好学 阳光 向善 第 4页 共4页问题2:数轴上含字母的有理数大小比较的推理问题 已知有理数a ,b 在数轴上所对应的位置如图所示(1)请在数轴上标出表示-a ,-b 的点; (2)请用“<”把a ,-a ,b ,-b 连接起来【当堂检测】1.在-4,2,-1,3这四个数中,比-2小的数是( ) A. -4 B. 2 C. -1 D. 32. 比较大小:(填“>”、“<”或“=”) (1)-8 ____ -10; (2)0____-6;(3)1____-5; (4)-4____-7;(5)21-______32-; (6)21-_____32;(7)-(-5)_____ 2--; (8)-(-0.3)______31-. 3. 把下列各数在数轴上表示出来,并用“<”把它们连接起来. 3.5,0,-4,2,212-.4. 在数-3,-2,0,3中,大小在-1和2之间的数是( ) A. -3 B. -2 C. 0 D. 35. 已知有理数a ,b 在数轴上的位置如图:比较大小,用“>”、“<”或“=”填空: (1)a _____0; (2)b _____0; (3)1_____b ; (4)a _____b ; (5)a ______-1; (6)b _____-a ; (7) a _____ b .【自我总结与反思】。
1.2.4绝对值【教学目标】1.能理解绝对值的概念.2.经历探索正数、负数、零的绝对值的过程,归纳出有理数绝对值的求法.3.经历绝对值概念的形成,初步体会数形结合、分类讨论的数学思想方法,丰富解决问题的策略.【教学重点难点】重点:绝对值的概念及求一个数的绝对值.难点:绝对值的几何意义、代数定义的导出.代数定义转化为数学式子.【教学过程】一、创设情境1.如图,如果王奇与李明两人同时出发以相同的速度去学校,谁将先到达学校?这与什么有关?A点表示的数是什么?它到原点的距离是多少?B点表示的数是什么?它到原点的距离是多少?2.星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关.二、探究归纳探究点1:绝对值的意义及求法问题:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正.两辆出租车都从O 地出发,甲车向东行驶10 km 到达A 处,记作 km,乙车向西行驶10 km 到达B 处,记作 km .(2)以O 为原点,取适当的单位长度画数轴,并在数轴上标出A ,B 的位置,则A ,B 两点与原点距离分别是多少?它们的实际意义是什么?要点归纳:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a |.-5到原点的距离是5,所以-5的绝对值是 ,记作 =5; 0到原点的距离是 ,所以0的绝对值是 ,记作|0|= ;4到原点的距离是 ,所以4的绝对值是 ,记作|4|= .探究点2:绝对值的性质及应用问题1:请同学们画出数轴,并在画出的数轴上标出下列相反数: +3与-3;-5与5;4与-4;-1与1;-12与12.问题2:每组相反数所对应的点,在数轴上的位置有什么关系?问题3:每组相反数所对应的点与原点的距离有什么关系?【处理方式】从形的角度进一步理解相反数,先由学生利用数轴表示出相反数,通过观察相反数在数轴上的位置及与原点的距离,理解绝对值.在数轴上,一个数所对应的点与原点的距离叫作这个数的绝对值.思考1:(1)如果a表示有理数,那么|a|有什么含义?(2)互为相反数的两个数的绝对值又有什么关系呢?(3)一个数的绝对值与这个数有什么关系?要点归纳:结论1:一个正数的绝对值是正数,一个负数的绝对值是正数,0的绝对值是0.结论2:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数.思考2:我们如何用符号来表示绝对值的性质呢?若字母a表示一个有理数,你知道a的绝对值等于什么吗?(1)当a是正数时,|a|=;正数的绝对值是它本身.(2)当a是负数时,|a|=;负数的绝对值是它的相反数.(3)当a=0时,|a|=.0的绝对值是0.要点归纳:写成:|a|={a(a>0), 0(a=0), -a(a<0).思考3:(1)一个有理数的绝对值可能是负数吗?可能小于它本身吗?(2)请说出哪个数的绝对值最大?离原点多远?哪个数的绝对值最小?离原点多远?要点归纳:1.绝对值不可能是负数,任何一个有理数的绝对值都是非负数,即|a |≥0.2.一个数的绝对值越大,这个数在数轴上对应的点离原点越远;相反,绝对值越小,离原点越近.3.没有绝对值最大的数,绝对值最小的数是0.【典例剖析】例1:教材P13【例4】例2:化简:(1)|-(+12)|.(2)-|-113|. 解:(1)|-(+12)|=|-12|=12. (2)-|-113|=-113. 例3:若|a |+|b |=0,求a ,b 的值.提示:由绝对值的性质可得|a |≥0,|b |≥0.例4:已知|x -4|+|y -3|=0,求x +y 的值.三、检测反馈1.-6的绝对值为 ,6的绝对值是 ,0的绝对值是 .2.求下列各数的绝对值:-3,5,0,+58,0.6.3.(1)|+2|= ,|15|= ,|+8.2|= . (2)|-3|= ,|-0.2|= ,|-8.2|= .4.绝对值最小的数是 .5.相反数等于本身的数有,绝对值等于本身的数有.6.已知一个数的绝对值等于3,那么这个数是.四、本课小结1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值注意先判断这个数是正数还是负数.五、布置作业P14练习,P17T4六、板书设计七、教学反思1.情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.2.一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间.。
第2课时 比较大小基础题知识点1 利用数轴比较大小1.如图,下列说法中,正确的是( )A .a >bB .b >aC .a >0D .b <02.如图,下列各点表示的数中,比1大的数是点________表示的数( )A .AB .BC .CD .D3.已知有理数x ,y 在数轴上的位置如图所示,则下列结论正确的是( )A .x>0>yB .y>x>0C .x<0<yD .y<x<04.如图所示,根据有理数a ,b ,c 在数轴上的位置,比较a ,b ,c 的大小关系是( )A .a>b>cB .a>c>bC .b>c>aD .c>b>a5.若有理数a ,b 在数轴上对应的点的位置如图,则|a|,|b|的大小关系是________.6.把下列各数在数轴上表示出来,并用“<”把各数连接起来:-212,4,-4,0,412.知识点2 利用法则比较大小7.(某某中考)下列各数比-2小的是( )A .-3B .-1C .0D .1 8.(某某中考)下列各数中,最大的是( )A .0B .2C .-2D .-129.(某某中考)下列四个数中,最小的数是( )A .-12 B .0 C .-2 D .210.(某某中考)比较-3,1,-2的大小,正确的是( ) A .-3<-2<1 B .-2<-3<1 C .1<-2<-3 D .1<-3<-2 11.写出一个小于-3的分数:________________.12.比较大小:(1)-23______-34;(2)-(-5)______-|-5|.13.比较下列各对数的大小: (1)-(-3)和|-2|;(2)-45和-23;(3)-(-7)和-1.14.在一次游戏结束时,5个队的得分如下(答对得正分,答错得负分),A 队:-50;B 队:150,C 队:-300;D 队:0;E 队:100.请把这些队的得分按低分到高分排序.这次游戏的冠军是哪个队? 中档题15.在数轴上,下列说法不正确的是( ) A .两个有理数,绝对值大的数离原点远 B .两个有理数,其中较大的数在右边 C .两个负有理数,其中较大的数离原点近D .两个有理数,其中较大的数离原点远 16.下列四组有理数的大小比较正确的是( ) A .-12>-13 B .-|-1|>-|+1|C.12<13 D .|-12|>|-13|17.若a 、b 为有理数,a >0,b <0,且|a|<|b|,则a 、b 、-a 、-b 的大小关系是( ) A .b <-a <-b <a B .b <-b <-a <a C .b <-a <a <-b D .-a <-b <b <a18.若a =-12 015,b =-12 016,则a 、b 的大小关系是a________b.19.比较下列每组数的大小: (1)-(-5)与-|-5|;(2)-45与-|-34|.20.下表是2015年某日我国几个城市的平均气温:(1)把各城市的平均气温按照从小到大的顺序用“<”号连接起来;(2)借助于数轴算算,某某的平均气温比某某高多少?综合题21.某工厂生产一批精密的零件要求是φ50(φ表示圆形工件的直径,单位是mm),抽查了5个零件,数据如下表,超过规定的记作正数,不足的记作负数.(1)哪些产品是符合要求的?(2)符合要求的产品中哪个质量最好?用绝对值的知识加以说明.参考答案1.B2.D3.C4.A5.|a|>|b|6.画数轴表示略.大小关系为-4<-212<0<4<412.7.A 8.B 9.C 10.A 11.答案不唯一,如:-323等 12.(1)> (2)>13.(1)-(-3)>|-2|. (2)-45<-23.(3)-(-7)>-1.14.C<A<D<E<B ,这次游戏的冠军是B 队. 15.D 16.D 17.C 18.<19.(1)化简:-(-5)=5,-|-5|=-5. 因为正数大于负数, 所以-(-5)>-|-5|. (2)化简:-|-34|=-34,因为|45|=45=1620,|-34|=34=1520,且1620>1520,所以-45<-|-34|.20.(1)-12<-9<-6<-2<5<16. (2)在数轴上表示为:某某的平均气温比某某高7 ℃.21.(1)1号,3号,4号符合要求.(2)因为|+0.018|<|-0.021|<|+0.031|,所以3号零件质量最好.。