2. 曲线论
- 格式:ppt
- 大小:23.57 MB
- 文档页数:92
复代数几何中的曲线论在复代数几何中,曲线论是一个重要的研究领域,它探讨了复平面上的曲线及其特性。
本文将介绍曲线的定义、分类以及与代数方程的关系,并探讨其中的一些重要概念和定理。
一、曲线的定义和分类在复平面上,曲线可以由一条参数化的方程来表示。
一般来说,一条曲线可以用以下形式的方程表示:$$F(x, y) = 0$$其中,$F(x, y)$ 是一个复数域上的多项式函数。
根据曲线方程的次数,我们可以将曲线分为以下几类:1. 代数曲线:当 $F(x, y)$ 是一个有限阶的多项式时,曲线被称为代数曲线。
代数曲线的特点是可以由有限个代数方程定义,并且可以通过有限个解析函数表示。
2. 非代数曲线:当 $F(x, y)$ 包含无穷多次幂的项时,曲线被称为非代数曲线。
非代数曲线无法由有限个解析函数表示,并且通常需要其他数学工具进行研究。
二、曲线与代数方程的关系在代数几何中,曲线与代数方程之间存在着密切的联系。
特别地,代数曲线可以由对应的代数方程表示,而且代数方程的解集可以准确描述曲线上的点。
例如,考虑二次曲线 $F(x, y) = ax^2 + bxy + cy^2 + dx + ey + f = 0$,其中 $a, b, c, d, e, f$ 是实数。
这个方程描述了复平面上的一个二次曲线,具体的形状取决于系数的取值。
对于每一个给定的系数组合,方程 $F(x, y) = 0$ 的解集可以是空集、一个点、一条直线、一个椭圆、一个抛物线或者一个双曲线。
通过调整系数的取值,我们可以获得不同形状的二次曲线。
三、曲线的重要概念和定理1. 奇点:在曲线上,奇点指的是曲线上的一个点,该点处的切线无法被定义。
在曲线上,奇点可能是由于曲线自交或者曲线出现尖点等原因而产生的。
奇点对于曲线的研究非常重要,它们可以帮助我们理解曲线的几何特性。
2. 亏格:亏格是一个描述曲线拓扑性质的重要概念。
对于代数曲线来说,亏格可以通过公式 $g = 1 - \frac{1}{2}(d-1)(d-2)$ 计算得到,其中 $d$ 是曲线方程的次数。
曲线论习题及答案曲线论习题及答案曲线论是数学中的一个重要分支,研究曲线的性质、方程和图形。
在学习曲线论的过程中,练习习题是非常重要的,可以帮助我们巩固知识,提高解题能力。
本文将给出一些曲线论的习题及其详细解答,希望能对读者的学习有所帮助。
1. 有一个曲线的方程为 y = x^2 - 3x + 2,求该曲线的顶点坐标。
解答:对于二次函数 y = ax^2 + bx + c,其顶点坐标可以通过公式 x = -b/2a和 y = f(x) 求得。
根据给定的方程,可以得到 a = 1,b = -3,c = 2。
代入公式计算可得 x = -(-3) / (2*1) = 3/2,将 x 值代入方程求得 y = (3/2)^2 - 3*(3/2) + 2 = 1/4。
因此,该曲线的顶点坐标为 (3/2, 1/4)。
2. 已知一条曲线的方程为 y = 2x^3 - 5x^2 + 3x - 1,求该曲线的导数函数。
解答:导数函数是原函数的导数。
对于多项式函数 y = ax^n + bx^(n-1) + ... +cx + d,其导数函数为 y' = nax^(n-1) + (n-1)bx^(n-2) + ... + c。
根据给定的方程,可以得到 a = 2,b = -5,c = 3,d = -1。
代入公式计算可得 y' = 6x^2 -10x + 3。
因此,该曲线的导数函数为 y' = 6x^2 - 10x + 3。
3. 有一条曲线的方程为 y = e^x + 2,求该曲线的渐近线方程。
解答:渐近线是曲线在无穷远处趋近的直线。
对于指数函数 y = ae^bx + c,其渐近线方程为 y = c。
根据给定的方程,可以看出当 x 趋近于无穷大时,e^x 也趋近于无穷大,因此该曲线的渐近线方程为 y = 2。
4. 一条曲线的方程为 y = ln(x) - 1,求该曲线的对称轴方程。
解答:对称轴是曲线的镜像轴,对于函数 y = f(x),其对称轴方程为 x = a,其中 a 是函数 f(x) 的极值点。
第一章 曲线论§2 向量函数5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r= 0 ;分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e为常向量,因为)(t e的长度固定;证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r=λ'λe ×e =0 ;反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r×'r =2λe ×'e =0 ,则有 λ =0 或e ×'e =0 ;当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e=0,而e×'e2)=22'e e -e ·'e 2)=2'e ,因为e 具有固定长,e ·'e = 0 ,所以 'e =0 ,即e为常向量;所以,)(t r 具有固定方向;6.向量函数)(t r平行于固定平面的充要条件是r 'r ''r =0 ;分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使)(t r ·n= 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系;证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n为常向量,且)(t r·n = 0 ;两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,''r 垂直于同一非零向量n,因而共面,即r 'r ''r =0 ;反之, 若r 'r ''r =0,则有r ×'r =0 或r ×'r ≠0 ;若r ×'r =0,由上题知)(t r 具有固定方向,自然平行于一固定平面,若r ×'r≠0 ,则存在数量函数)(t λ、)(t μ,使''r =r λ+μ'r①令n =r ×'r,则n≠0 ,且)(t r ⊥)(t n ;对n =r ×'r求微商并将①式代入得'n =r ×''r =μr ×'r=μn ,于是n ×'n =0 ,由上题知n 有固定方向,而)(t r ⊥n ,即)(t r 平行于固定平面;§3 曲线的概念1.求圆柱螺线x =t cos ,y =t sin ,z=t 在1,0,0的切线和法平面;解 令t cos =1,t sin =0, t =0得t =0, 'r0={ -t sin ,t cos ,1}|0=t ={0,1,1},曲线在0,1,1的切线为 111z y x ==- ,法平面为 y + z = 0 ;2.求三次曲线},,{32ct bt at r =在点0t 的切线和法平面;解 }3,2,{)('2000ct bt a t r = ,切线为230020032ct ct z bt bt y a at x -=-=-, 法平面为 0)(3)(2)(30202000=-+-+-ct z ct bt y bt at x a ; 3. 证明圆柱螺线r ={ a θcos ,a θsin ,θb } +∞∞- θ的切线和z 轴作固定角;证明 'r= {-a θsin ,a θcos ,b },设切线与z 轴夹角为ϕ,则ϕcos=22||||'ba be r k r +=⋅ 为常数,故ϕ为定角其中k 为z 轴的单位向量; 4. 求悬链线r ={t ,a t a cosh }-∞∞ t 从t =0起计算的弧长;解'r = {1,atsinh },|'r | =at2sinh 1+ = a tcosh , s=a tta ta dt sinh cosh=⎰ ;9.求曲线2232,3axz y a x ==在平面3ay =与y = 9a 之间的弧长;解 曲线的向量表示为r =}2,3,{223xa a x x ,曲面与两平面3a y = 与y = 9a 的交点分别为x=a 与x=3a , 'r =}2,,1{2222xa ax -,|'r |=444441x a a x ++=22222xa a x +,所求弧长为a dx xa a x s aa9)2(22322=+=⎰; 10. 将圆柱螺线r ={a t cos ,a t sin ,b t }化为自然参数表示;解 'r= { -a t sin ,a t cos ,b},s = t b a dt r t 220|'|+=⎰ ,所以22ba s t +=,代入原方程得 r ={a cos22ba s +, a sin22ba s +,22ba bs +}11.求用极坐标方程)(θρρ=给出的曲线的弧长表达式; 解由θθρcos )(=x ,θθρsin )(=y 知'r ={)('θρθcos -θθρsin )(,)('θρθsin +θθρcos )(},|'r| = )(')(22θρθρ+,从0θ到θ的曲线的弧长是s=⎰θθ0)(')(22θρθρ+d θ ;§4 空间曲线1.求圆柱螺线x =a t cos ,y =a t sin ,z = b t 在任意点的密切平面的方程;解 'r ={ -a t sin ,a t cos ,b},''r={-a t cos ,- a t sin ,0 } 所以曲线在任意点的密切平面的方程为sin cos cos sin sin cos ta ta b t a t a bt z t a y t a x ------ = 0 ,即b t sin x-b t cos y+a z-ab t=0 .2. 求曲线r = { t t sin ,t t cos ,t t e } 在原点的密切平面、法平面、从切面、切线、主法线、副法线;解 原点对应t=0 , 'r0={ t sin +t t cos ,t cos - t t sin ,t e +t t e 0}=t ={0,1,1},=)0(''r{2t cos + t t cos ,t cos - t t sin ,2t e +t t e 0}=t ={2,0,2} ,所以切线方程是110zy x == ,法面方程是 y + z = 0 ; 密切平面方程是202110zy x=0 ,即x+y-z=0 ,主法线的方程是⎩⎨⎧=+=-+00z y z y x 即112zy x =-=; 从切面方程是2x-y+z=0 ,副法线方程式111-==zy x ; 3.证明圆柱螺线x =a t cos ,y =a t sin ,z = b t 的主法线和z 轴垂直相交;证 'r ={ -a t sin ,a t cos ,b}, ''r ={-a t cos ,- a t sin ,0 } ,由'r ⊥''r 知''r为主法线的方向向量,而''r 0=⋅k所以主法线与z 轴垂直;主法线方程是与z 轴有公共点o,o,bt;故圆柱螺线的主法线和z 轴垂直相交;4.在曲线x = cos αcost ,y = cos αsint , z = tsin α的副法线的正向取单位长,求其端点组成的新曲线的密切平面;解 'r = {-cos αsint, cos αcost, sin α } , ''r={ -cos αcost,- cos αsint ,0 }=⨯⨯=|'''|'''r r r rγ{sin αsint ,- sin αcost , cos α }新曲线的方程为r ={ cos αcost + sin αsint ,cos αsint- sin αcost ,tsin α + cos α }对于新曲线'r={-cos αsint+ sin αcost ,cos αcost+ sin αsint,sin α }={sin α-t,cos α-t, sin α} , ''r={ -cos α-t, sin α-t,0} ,其密切平面的方程是即 sin α sint-α x –sin α cost-α y + z – tsin α – cos α = 0 .5.证明曲线是球面曲线的充要条件是曲线的所有法平面通过一定点; 证 方法一:⇒设一曲线为一球面曲线,取球心为坐标原点,则曲线的向径)(t r具有固定长,所以r ·'r= 0,即曲线每一点的切线与其向径垂直,因此曲线在每一点的法平面通过这点的向径,也就通过其始点球心;⇐ 若一曲线的所有法平面通过一定点,以此定点为坐标原点建立坐标系,则r ·'r = 0,)(t r具有固定长,对应的曲线是球面曲线;方法二:()r r t =是球面曲线⇔存在定点0r 是球面中心的径矢和常数R 是球面的半径使220()r r R -=⇔02()0r r r '-⋅= ,即0()0r r r '-⋅= ﹡而过曲线()r r t =上任一点的法平面方程为()0r r ρ'-⋅= ;可知法平面过球面中心⇔﹡成立;所以,曲线是球面曲线的充要条件是曲线的所有法平面通过一定点;6.证明过原点平行于圆柱螺线r ={a t cos ,a t sin ,b t }的副法线的直线轨迹是锥面2222)(bz y x a =+.证 'r={ -a tsin ,a t cos , }, ''r ={-a t cos ,- a t sin ,0 } ,'r×''r=},cos ,sin {a t b t b a ---为副法线的方向向量,过原点平行于副法线的直线的方程是az t b y t b x =-=cos sin ,消去参数t 得2222)(bz y x a =+; 7.求以下曲面的曲率和挠率⑴ },sinh ,cosh {at t a t a r =,⑵ )0)}(3(,3),3({323a t t a at t t a r +-=;解 ⑴},cosh ,sinh {'a t a t a r =,}0,sinh ,cosh {''t a t a r =,}0,cosh ,{sinh '''t t a r =,}1,cosh ,sinh {'''--=⨯t t a r r,所以t a t a t a r r r k 2323cosh 21)cosh 2(cosh 2|'||'''|==⨯= ta t a a r r r r r 22422cosh 21cosh 2)'''()''','','(==⨯=τ ; ⑵ }1,2,1{3'22t t t a r +-= ,}1,0,1{6'''},,1,{6''-=-=a r t t a r,'r ×''r =}1,2,1{18222+--t t t a ,22322223)1(31)1(2227)1(218|'||'''|+=++=⨯=t a t a t a r r r k22224232)1(31)1(2182618)'''()''','','(+=+⨯⨯⨯=⨯=t a t a a r r r r r τ ; 8.已知曲线}2cos ,sin ,{cos 33t t t r = ,⑴求基本向量γβα ,,;⑵曲率和挠率;⑶验证伏雷内公式;分析 这里给出的曲线的方程为一般参数,一般地我们可以根据公式去求基本向量和曲率挠率,我们也可以利用定义来求;解 ⑴ }4,sin 3,cos 3{cos sin }2sin 2,cos sin 3,sin cos 3{'22--=--=t t t t t t t t t r,,cos sin 5|)('|t t t r dtds ==设sintcost>0, 则}54,sin 53,cos 53{|'|'--==t t r r α,}0,cos 53,sin 53{cos sin 51t t t t ds dt dt d ==•αα, }0,cos ,{sin ||t t ==••ααβ,}53,sin 54,cos 54{--=⨯=t t βαγ ,⑵ t t k cos sin 253||==•α,}0,cos ,sin {cos sin 254t t t t --=•γ ,由于•γ 与β 方向相反,所以 tt cos sin 254||==•γτ⑶ 显然以上所得 τγβα,,,••k 满足 βτγβα -==••,k ,而γτακβ+-=-=•}0,sin ,{cos cos sin 51t t tt 也满足伏雷内公式 ;9.证明如果曲线的所有切线都经过一的定点,则此曲线是直线;证 方法一:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的切线方程是)(')(t r t r λρ=-,由条件切线都过坐标原点,所以)(')(t r t rλ=,可见r ∥'r ,所以r 具有固定方向,故r =)(t r是直线;方法二:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的切线方程是)(')(t r t rλρ=-,由条件切线都过坐标原点,所以)(')(t r t rλ=,于是'r =λ''r ,从而'r ×''r=0 ,所以由曲率的计算公式知曲率k =0,所以曲线为直线;方法二:设定点为0r ,曲线的方程为r =()r s ,则曲线在任意点的切线方程是()()r s s ρλα-=,由条件切线都过定点0r ,所以0()()r r s s λα-=,两端求导得:()()s s αλαλκβ'-=+, 即(1)()0s λαλκβ'++= ,而(),()s s αβ无关,所以10λ'+=,可知0,()0s λκ≠∴=,因此曲线是直线;10. 证明如果曲线的所有密切平面都经过一的定点,则此曲线是平面曲线;证 方法一:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的密切平面的方程是0))('')('())((=⨯⋅-t r t r t r ρ,由条件0))('')('()(=⨯⋅-t r t r t r,即r 'r ''r =0,所以r 平行于一固定平面,即r =)(t r是平面曲线;方法二:取定点为坐标原点建坐标系,曲线的方程设为r =)(s r,则曲线在任意点的密切平面方程是0))((=⋅-γρ s r ,由条件0)(=⋅γs r ,两边微分并用伏雷内公式得τ-0)(=⋅β s r ;若0)(=⋅β s r ,又由0)(=⋅γ s r 可知)(s r ∥)(s r •= α,所以r =)(s r平行于固定方向,这时r =)(s r表示直线,结论成立;否则0=τ,从而知曲线是平面曲线;方法三:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的密切平面方程是0))('')('())((=⨯⋅-t r t r t r ρ,由条件0))('')('()(=⨯⋅-t r t r t r,即r 'r ''r =0,所以r ,'r ,''r 共面,若r ∥'r ,则r =)(t r是直线,否则可设''',''''''r r r r r r λμλμ=+∴=+,所以','','''r r r 共面,所以0=τ,从而知曲线是平面曲线;11. 证明如果一条曲线的所有法平面包含常向量e,那么曲线是直线或平面曲线;证 方法一:根据已知0=⋅e α,若α是常向量,则k=||•α =0 ,这时曲线是直线;否则在0=⋅e α两边微分得•α ·e =0,即 k β ·e =0,所以β ·e =0,又因0=⋅e α,所以γ ∥e ,而γ 为单位向量,所以可知γ 为常向量,于是0||||==•γτ,即0=τ,此曲线为平面曲线;方法二:曲线的方程设为r =)(t r ,由条件'r ·e =0,两边微分得''r ·e =0,'''r ·e=0,所以'r , ''r ,'''r共面,所以'r ''r '''r =0;由挠率的计算公式可知0=τ,故曲线为平面曲线;当'r ×''r=0 时是直线;方法三:曲线的方程设为r =)(t r,由条件'r ·e =0,两边积分得p 是常数;因r e p ⋅=是平面的方程,说明曲线r =)(t r在平面上,即曲线是平面曲线,当'r 有固定方向时为直线;12.证明曲率为常数的空间曲线的曲率中心的轨迹仍是曲率为常数的曲线;证明 设曲线C :r =)(s r的曲率k 为常数,其曲率中心的轨迹C 的方程为:)(1)(s ks r βρ+= ,β 为曲线C 的主法向量,对于曲线C 两边微分得γτγτααρ kk k s =+-+=)(1)(' ,α ,γ ,τ分别为曲线C 的单位切向量,副法向量和挠率,βτγτρ k k 2''-=•,k |||'|τρ= ,23'''k τρρ=⨯ α ,曲线C 的曲率为k k k k ==⨯=-33233|||||'||'''|ττρρρ为常数;13.证明曲线x=1+3t+22t ,y=2-2t+52t ,z=1-2t 为平面曲线,并求出它所在的平面方程 ;证 'r ={3+4t, -2+10t,-2t}, ''r ={4,10,-2}, '''r={0,0,0}曲线的挠率是0)'''()''','','(2=⨯=r r r r r τ,所以曲线为平面曲线;曲线所在平面是曲线在任一点的密切平面;对于t=0,r ={1,2,1},'r ={3, -2,0}, ''r ={4,10,-2}, '''r={0,0,0};所以曲线的密切平面,即曲线所在平面是02104023121=-----z y x ,即2x+3y+19z –27=0.14.设在两条曲线Γ、Γ的点之间建立了一一对应关系,使它们在对应点的切线平行,证明它们在对应点的主法线以及副法线也互相平行;证 设曲线Γ:r =)(s r与Γ:)(s r r =点s 与s 一一对应,且对应点的切线平行,则)(s α=)(s α±, 两端对s 求微商得ds s d αα ±=, 即dss d s k s k )()(ββ ±= ,这里k ≠0,若k=||α =0,则β 无定义,所以β ∥β ,即主法线平行,那么两曲线的副法线也平行;15.设在两条曲线Γ、Γ的点之间建立了一一对应关系,使它们在对应点的主法线平行,证明它们在对应点的切线作固定角;证 设α ,α分别为曲线Γ、Γ的切向量,β ,β 分别为曲线Γ、Γ的主法向量,则由已知)()(s s ββ ±=.....① ,而ds s d ds d αααααα ⋅+⋅=⋅)(= dss d s k k )(βααβ ⋅+⋅ 将①式代入 0)(=⋅±⋅dss d k βααβ ;所以α ·α=常数,故量曲线的切线作固定角;16.若曲线Γ的主法线是曲线Γ的副法线, Γ的 曲率、挠率分别为τκ,;求证k=0λ2κ+2τ ,其中0λ为常数;证 设Γ的向量表示为r =)(s r,则Γ可表示为ρ =)(s r +)(s λ)(s β , Γ的切向量'ρ =α+λ β +λ-k α +τγ 与β 垂直,即'ρ ·β =λ =0,所以λ为常数,设为0λ,则'ρ =1-0λk α +0λτγ ;再求微商有''ρ =-0λk α+1-0λkk β +0λτ γ -0λ2τβ ,''ρ ·β =1-0λkk -0λ2τ=0,所以有k=0λ2κ+2τ;17.曲线r ={at-sint,a1-cost,4acos2t}在那点的曲率半径最大;解 'r= a{1-cost,sint,-2sin2t } , ''r = a{sint,cost,-cos 2t}, |2sin |22|'|tr = ,'r ×''r =}1,2cos ,2{sin 2sin 2}2cos 4,2cos 2sin 2,2sin 2{22232tt t a t a t t t a -=--,|'r ×''r |=22sin 222t a , |2sin|81|||'''|3ta r r r k =⨯=,|2sin |8t a R = ,所以在t=2k+1π,k 为整数处曲率半径最大;18. 已知曲线)(:)(3s r r C C =∈上一点)(0s r 的邻近一点)(0s s r ∆+ ,求)(0s s r ∆+点到)(0s r 点的密切平面、法平面、从切平面的距离设点)(0s r 的曲率、挠率分别为00,τκ;解)(0s s r ∆+-)(0s r =30200])([!31)(21)(s s r s s r s s r ∆++∆+∆ε =300021s s ∆+∆βκα +300000020)(61s k k ∆+++-εγτκβα ,设030201γεβεαεε ++=,其中0lim 0=→∆ε s ;则)(0s s r ∆+ -)(0s r=0330003202003120])(61[])(6121[])(61[γετκβεκκαεκ s s s s s ∆++∆++∆+∆+-+∆ 上式中的三个系数的绝对值分别是点)(0s s r ∆+ 到)(0s r的法平面、从切平面、密切平面的距离;§5 一般螺线5. 证明如果所有密切平面垂直于固定直线,那么它是平面直线.证法一: 当曲线的密切平面垂直于某固定直线时,曲线的副法向量γ是常向量.即γ=0;曲线的挠率的绝对值等于|γ|为零,所以曲线为平面曲线; 证法二:设n 是固定直线一向量,则'r ·n =0 ,积分得r ·n=p ,说明曲线在以n 为法向量的一个平面上,因而为平面直线;证法三:设n 是固定直线一向量,则'r ·n =0 ,再微分得''r ·n =0 ,'''r ·n=0 ;所以'r 、''r 、'''r三向量共面,于是'r ''r '''r = 0 ,由挠率的计算公式知τ=0,因此曲线为平面曲线;7.如果两曲线在对应点有公共的副法线,则它们是平面曲线;证 设一曲线为Γ:r =)(s r,则另一曲线Γ的表达式为:+=)(s r ρ)(s λ)(s γ ,)(s γ 为曲线Γ在点s 的主法向量,也应为Γ在对应点的副法线的方向向量;'ρ =α+λ γ -λτβ 与γ 正交,即'ρ ·γ =0,于是λ =0,λ为常数;'ρ =α -λτβ ,''ρ =k β -λτ β -λτ-k α+τγ 也与γ 正交,即''ρ ·γ =-λ2τ=0,而λ≠0,所以有τ=0,曲线Γ为平面曲线;同理曲线Γ为平面曲线;8. 如果曲线Γ:r =)(s r为一般螺线, α、β 为Γ的切向量和主法向量,R 为Γ的曲率半径;证明Γ:ρ=R α-⎰ds β 也是一般螺线;证 因为Γ为一般螺线, 所以存在一非零常向量e 使α与e成固定角,对于曲线Γ,其切向量'ρ=αββκα R R R =-+与α共线,因此也与非零常向量e 成固定角, 所以Γ也为一般螺线;9.证明曲线r =)(s r 为一般螺线的充要条件为0),,(....=r r r证 βκ =r ,γτκτκβκτκκακκγκτβκακ )2()(3,23....2++-+-+-=++-=r r 25333....)(3)2(),,(κτκτκκτκτκκτκκτκτκ -=-=-+=k r r r =)(5κτκ,其中k ≠0. 曲线r =)(s r 为一般螺线的充要条件为κτ为常数,即•)(κτ=0,也就是0),,(....=r r r ;方法二: 0),,(....=r r r ,即0),,(=ααα;曲线r =)(s r 为一般螺线,则存在常向量e ,使α·e =常数,所以,0,0,0=⋅=⋅=⋅e e e ααα所以ααα ,,共面,从而ααα ,,=0;反之,若ααα ,,=0,则α 平行于固定平面,设固定平面的法矢为e ,则有0=⋅e α,从而α·e = p 常数,所以r =)(s r 为一般螺线;方法三:曲线r =)(s r 为一般螺线⇔存在常向量e 使e β⊥,即0e ββ⋅=⇔平行于固定平面以e 为法向量的平面r ⇔平行于一固定平面(,,)0r r r ⇔= ;方法四:""⇒设r =)(s r 为一般螺线,存在常向量e 使e α⋅=常数,即r e ⋅=常数,连续三次求微商得0,0r e r e ⋅=⋅=,0r e ⋅= ,所以0),,(....=r r r ;""⇐因为0),,(....=r r r ,所以r 平行于固定平面,设固定平面的法矢为n 常向量,则r n ⊥,而,r n ββ∴⊥,所以曲线为一般螺线;10. 证明一条曲线的所有切线不可能同时都是另一条曲线的切线;证 设曲线Γ与Γ在对应点有公共的切线,且Γ的表达式为:r =)(s r ,则Γ:+=)(s r ρ)(s λ)(s α ,λ≠0,其切向量为'ρ=α+λ α+λk β 应与α平行,所以k =0,从而曲线Γ为直线;同理曲线Γ为直线,而且是与Γ重合的直线;所以作为非直线的两条不同的曲线不可能有公共的切线;11.设在两条曲线Γ、Γ的点之间建立了一一对应关系,使它们在对应点的切线平行,证明它们在对应点的主法线以及副法线也互相平行,且它们的挠率和曲率都成比例,因此如果Γ为一般螺线, 则Γ也为一般螺线;证 设曲线Γ:r =)(s r 与Γ:)(s r r =点建立了一一对应,使它们对应点的切线平行,则适当选择参数可使)(s α =)(s α , 两端对s 求微商得ds s d αα =, 即ds s d s k s k )()(ββ = ,这里0 ds s d ,所以有β =β ,即主法线平行,从而)(s γ =)(s γ ,即两曲线的副法线也平行;且,ds s d κκ= 或ds s d =κκ;)(s γ =)(s γ 两边对s 求微商得dss d s s )()(βτβτ -=-,于是 ,ds s d ττ=或ds s d =ττ,所以,ττκκ= 或τκτκ=;。
数学的微分几何与流形微分几何是数学中研究曲线、曲面及高维流形的几何性质的一个分支。
它是现代几何学中十分重要的一个领域,不仅在纯数学中有广泛应用,而且在物理学中也有重要的地位。
一、微分几何的起源微分几何的起源可以追溯到18世纪末19世纪初,当时欧拉、拉格朗日和拉普拉斯等一批杰出的数学家为解决实际问题而创造了微分学的基本概念和方法。
微分几何的发展可以分为三个阶段:曲线论、曲面论和高维流形论。
二、曲线论曲线的最基本概念是弧长和切向量。
通过弧改参数化,我们可以定义曲线的切向量和法向量,从而研究曲线上的切线、切平面等性质。
在曲线论中,我们还可以定义曲率和挠率等重要的几何量,研究曲线的弯曲和扭转程度。
三、曲面论曲面是三维欧氏空间中的一个二维流形。
在曲面论中,我们研究曲面的性质,并引入了曲面上的测地线、曲率等概念。
测地线是曲面上的一条参数化曲线,其切线在每个点处都位于曲面的切平面上。
测地线在相对论中有重要的应用,可以描述物质粒子在时空中的运动。
四、高维流形论高维流形是微分几何的核心研究对象。
高维流形可以看作是局部与欧氏空间同胚的空间,通过局部坐标系可以引入切空间的概念,进而研究流形上的微分结构。
高维流形理论与拓扑学、代数学和物理学等领域有着重要的联系,尤其在广义相对论中的应用。
五、流形的局部性质流形的局部性质是研究流形微分几何的基础。
利用局部坐标系,我们可以引入切向量和切空间,并定义流形上的微分结构。
在流形的局部,我们可以定义度量、联络和曲率等几何量,用来刻画流形的性质。
流形的局部性质为研究流形的整体性质提供了基础。
六、流形的整体性质流形的整体性质研究如何将局部的几何性质拓展到整个流形上。
在整体性质中,流形的拓扑性质起着重要的作用。
通过拓扑不变量,我们可以刻画流形的性质,并与代数拓扑学中的概念相联系。
此外,在流形的整体性质中,还有格拉斯曼流形、黎曼度量和测地线等重要的研究内容。
七、微分几何的应用微分几何不仅在纯数学中有广泛应用,而且在物理学中也起着重要的作用。
曲线论曲线的切线和法平面
曲线是数学中的一种图形,它由一系列的点组成,在一定的条件下可以连成一条弯曲的线。
曲线是数学研究中的重要对象,也是现代科学和工程技术的基础之一。
在曲线的研究中,切线和法平面是两个重要的概念,下面将对它们进行详细的介绍。
一、曲线的切线
曲线的切线是指曲线上的某一点处与该点最接近的一条直线,它是曲线研究中重要的概念之一。
切线的定义可以用以下公式表示:
设曲线方程为y=f(x),点P(x0,y0)处的切线方程为y=y0+f'(x0)(x-x0),其中f'(x0)代表曲线在点(x0,y0)处的导数。
从上式可以看出,切线方程的斜率为曲线在点(x0,y0)处的导数,即f'(x0),因此曲线在该点处的切线与曲线的切线斜率相同。
切线在曲线研究中的应用非常广泛,例如可以用来求曲线的拐点、极值等重要信息。
同时,切线还可以用于应用问题中,如物体的运动轨迹等。
二、曲线的法平面
法平面是曲线研究中的另一个重要概念,它与曲线的切线密切相关。
法平面是垂直于曲线在某一点处的切线的平面,它包含着曲线在该点处的所有法线。
z=-f'(x0)(x-x0)+y0
法平面在曲线研究中的应用非常广泛。
例如,可以用法平面来解决曲面切割问题,或者用法平面来求曲线的法向量等。
总之,曲线的切线和法平面在曲线研究中都是重要的概念。
它们的应用不仅仅局限于数学研究中,同时还具有广泛的应用价值。
因此,在学习曲线的过程中,要掌握这两个概念的基本理论,并且善于将其应用到实际问题中。