转子找静平衡
- 格式:doc
- 大小:335.50 KB
- 文档页数:3
转子找静平衡一、转子静不平衡的表现若将转子放置在静平衡台上, 然后用手轻轻转动转子, 让它自由停下来 , 可能出现下列情况 : (1) 当转子的重心在旋转轴心线上时 , 转子转到任一角度都可以停下来 , 这时转子处于静平衡状态 , 这种平衡称为随遇平衡。
(2) 当转子的重心不在旋转轴心线上时 :若转子承受的转动力矩大于轴和导轨之间的滚动摩擦力矩 , 则转子就要转动 , 使原有不平衡重量位于正下方 , 这种静不平衡称为显著不平衡。
若转动力矩小于滚动摩擦阻力矩 , 转子虽有转动趋势 , 但不能使不平衡重量转向正下方, 这种静不平衡称为不显著不平衡。
二、找静平衡前的准备工作(1)静平衡台转子找静平衡是在静平衡台上进行的 ,其结构如图 11-2 所示 , 轨道断面的形状如图 11-3。
静平衡台的大小和其轨道工作面宽度α需根据转子的大小、轻重而定。
轨道工作面宽度应保证轴颈和轨道工作面不被压伤 , 对于转子重量小于 l t 时 ,工作面宽度为 3~6mm, 重量为 1~6t 时 , 工作面宽度为 6~30mm; 轨道的长度约为轴径的 6~8 倍 , 其材料通常采用碳案工具钢或钢轨制作。
轨道工作面应仔细地研磨或用磨床加工 , 其表面粗糙皮不大于0.4/。
静平衡台安装后, 需对轨道进行校正 , 轨道水平方向的斜度不得大于 O.1~0.3mm/m, 两轨道间不平行度允许偏差为 2mm/m 。
静平衡台的安放位置应设在无机械振动和背风的地方 , 以免影响转子找平衡的结果。
(2)转子找静平衡的转子应清理干净 , 转子上的全部零件要组装好 , 并不得有松动。
轴颈的椭圆度和圆锥度不应大于 0.05mm, 轴颈不许有明显的伤痕。
若采用假轴找静平衡时 , 假轴与转子的自己合不得松动 , 假轴的加工精度不得低于原轴的精度。
转子放在轨道上时 , 动作要轻 , 轴的中心线要与轨道垂直 .转子找静平衡的工作 , 一般是在转子和轴检修完毕后进行 , 在找完平衡后 , 转子与轴不应再进行修理。
转子的静平衡和动平衡1、定义1)静平衡在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。
2)动平衡在转子两个校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定范围内,为动平衡又称双面平衡。
2、转子平衡的选择与确定如何选择转子的平衡方式,是一个关键问题。
其选择有这样一个原则:只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。
原因很简单,静平衡要比动平衡容易做,动平衡要比静动平衡容易做,省功、省力、省费用。
那么如何进行转子平衡型式的确定呢?需要从以下几个因素和依据来确定:1)转子的几何形状、结构尺寸,特别是转子的直径D 与转子的两校正面间的距离尺寸b 之比值,以及转子的支撑间距等。
2)转子的工作转速。
3)有关转子平衡技术要求的技术标准,如GB3215、API610 第八版、GB9239 和ISO1940 等。
3、转子做静平衡的条件在GB9239-88 平衡标准中,对刚性转子做静平衡的条件定义为:"如果盘状转子的支撑间距足够大并且旋转时盘状部位的轴向跳动很小,从而可忽略偶不平衡(动平衡),这时可用一个校正面校正不平衡即单面(静)平衡,对具体转子必须验证这些条件是否满足。
在对大量的某种类型的转子在一个平面上平衡后,就可求得最大的剩余偶不平衡量,并除以支撑距离。
如果在最不利的情况下这个值不大于许用剩余不平衡量的一半,则采用单面(静)平衡就足够了?quot;从这个定义中不难看出转子只做单面(静)平衡的条件主要有三个方面:一个是转子几何形状为盘状;一个是转子在平衡机上做平衡时的支撑间距要大;再一个是转子旋转时其校正面的端面跳动要很小。
对以上三个条件作如下说明:1)何谓盘状转子主要用转子的直径 D 与转子的两校正面间的距离尺寸 b 之比值来确定。
机械的平衡>刚性转子的静平衡静平衡(static balance)当转子(回转件)的宽度与直径之比(宽径比)小于0.2时,其所有的质量都可以看作分布在垂直于轴线的同一个平面内。
如果转子的质心位置不在回转轴线上,则当转子转动时,其偏心质量就会产生离心惯性力,从而在运动副中引起附加动压力。
因为不平衡现象在转子静止时就能显示出来,故称为静不平衡。
如果转子的质心位于回转轴线上就称为静平衡(static balance)。
静平衡的条件其平衡条件是: 不平衡惯性力的矢量和为零,即.或表示为:消去得:其中,m b为平衡质量,是平衡质量的项径.叫做质径积(mass-radius product),它相对地表示了各质量在同一转速下离心惯性力的大小和方向.静平衡又称为单面平衡(one-plane balance-----Which means that the masses which are generating the inertia forces are in, or nearly in, the same plane.).工程中符合这种条件的构件有: 齿轮(Gear),带轮(Pulley),摩托车车胎(motorcycle tire),飞机的螺旋桨(propeller)等等.例题图示为一盘形回转体,其上有四个不平衡质量,它们的大小及质心到回转轴线的距离分别为m 1=10kg, m 2=14kg, m 3=16kg, m 4=20kg, r 1=200mm, r 2=400mm, r 3=300mm, r 4=140mm, 欲使该回转体满足静平衡条件,试求需加平衡质径积的大小及方位。
解:先求出各不平衡质径积的大小。
其为 m 1r 1=10×0.2=2kg·m (方向向上) m 2r 2=14×0.4=5.6kg·m (方向向右) m 3r 3=16×0.3=4.8kg·m(方向向下) m 4r 4=20×0.14=2.8kg·m (方向向左)(1)用图解法。
转子找静平衡和转子找动平衡细节2016-08-22郭晓东11、找静平衡的准备工作:(1)准备发一般常用的工具、量具、平衡铁块和仪表;(2)检查现场有无震动和风力的二扰;(3)检查平衡台是否符合质量要求;(4)检查轴的表面粗糙度和轴的弯曲度,椭圆、锥度。
2、静平衡台的种类及要求:(1)轨道平衡台①棱形轨和表面应保持光滑洁静。
②两轨的距离在不防碍叶轮转动情况下,尽量缩小些;两轨道不平行度不超过0.5mm/m,轨道倾斜度不超过0.6mm/m。
③平衡轴要有足够的刚度而不发生变形。
平衡轴的两端轴颈尺寸误差不超过±0.01mm;椭圆度不超过0.02mm,锥度不超过0.02mm;最在弯曲度不超过0.01mm。
④平衡台应稳定固牢靠,当转子在轨道上滚动数次后,其倾斜度和平行度均不发生变化。
(2)双轮转动平衡台:①轮盘应用45—#50钢制作或进行热处理以提高表面硬度。
②轮盘内的轴承应装配紧密且转动灵活。
③轮盘加工表面粗糙为内处圆不同心度不大于0.02mm。
④平衡轴应有足够的刚度来承受叶轮的重垂力面不发生变形,最大弯曲度不超过0.10mm/m;两端轴径误差不超过0.02mm,锥度不超过0.02mm。
⑤轮盘与轴径沿轴向表面应严密接触,不许有缝隙。
⑥轴的水平偏差不超过0.06mm/m。
(3)轴承平衡台:①其轴承应选用磨擦系数小的向心滚珠轴承,配合要紧密且转动灵活。
②轴安装水平度不超过0.06mm/m。
③轴承支架牢固,并有防尘设施。
④平衡轴的要求与前两种平衡台的要求一样。
⑤轴承注入少量的润滑油。
(4)在原设备上找静平衡①应清洗轴承并加入少量稀油润滑。
②拆开对轮连接销钉与电机解列。
③关闭进、出口挡板,必要时应进一步采取减少抽风措施,使叶轮能够自然停下后方能进行静平衡工作。
④盘车应灵活,不许有磨擦,碰撞现象。
2、找平衡的方法:(1)消除显著不平衡:将转子放在平衡台上,给转子一外力使其转动,待转子自由停止后,在其正上方做一记号,连续反复转数次,如果做记号的点仍停止在上方,此点即为轻点,即可在此处试加重量。
转子平衡条件(一)转子平衡条件引言•转子平衡是旋转机械工程中非常重要的问题之一。
•本文将介绍转子平衡的概念、原理以及相关条件。
转子平衡的定义•转子平衡是指转子在运转过程中,转动轴线始终保持在一个确定的位置上。
•转子平衡的好坏直接影响到机械系统的稳定性、振动和噪声水平等。
转子平衡的分类1.静平衡–静平衡要求转子在运转时,重心轴与转轴重合。
–静平衡通常适用于低速转子。
–实现静平衡的方法包括加装平衡块、加工平衡孔等。
2.动平衡–动平衡要求转子在高速运转时,减小或消除不平衡力和不平衡力矩。
–动平衡通常适用于高速转子。
–通过在转子上安装平衡块,根据不平衡振动的相位和幅值进行调整。
转子平衡条件•实现转子平衡的关键是满足以下条件:1.转动平衡条件–转子在运转时,要求没有引起任何振动和轴向力的分力和矩力。
–也即是转子在运转时,力矩和冲量之和为零。
2.动平衡条件–转子在高速运转时,要求减小或消除不平衡力和不平衡力矩。
–通常采用相位平衡和幅值平衡来实现动平衡。
3.刚度平衡条件–转子在运转时,要求在外力作用下能够保持刚度平衡。
–也即是转子在运转时,受到的力矩和冲量不会导致转轴位置偏移。
结论•转子平衡是保证机械系统平稳运转和减小振动噪声的重要问题。
•实现转子平衡的关键在于满足转动平衡、动平衡和刚度平衡条件。
•在设计和制造过程中,应该注重转子平衡的考虑和实现,以提高机械系统的稳定性和可靠性。
转子平衡的实现方法•实现转子平衡可以采用以下方法:1.平衡块的增减–通过在转子上增加或减少平衡块的质量,来达到平衡的目的。
–平衡块的位置和质量需要根据实际情况进行调整和计算。
2.平衡孔的加工–在转子上加工平衡孔,通过改变孔的大小和位置,来减小或消除不平衡力和不平衡力矩。
–平衡孔的加工需要考虑转子材料的强度和刚度,以及平衡孔的数量和分布。
3.动平衡仪器的应用–动平衡仪器可以用于测量转子的不平衡状态,根据测量结果进行平衡调整。
–动平衡仪器的使用可以提高平衡的准确性和效率。
泵动平衡和静平衡选择原则、因素和依据、条件、规定、试验与平衡方法一、静平衡:静平衡在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。
二、动平衡:动平衡在转子两个或者两个以上校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定范围内,为动平衡又称双面或者多面平衡。
三、转子平衡的选择原则:1、其选择有这样一个原则:只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。
3、原因很简单,静平衡要比动平衡容易做,省功、省力、省费用。
四、转子平衡的选择确定因素和依据:1、转子的几何形状、结构尺寸,特别是转子的直径D与转子的两校正面间的距离尺寸b之比值,以及转子的支撑间距等。
2、转子的工作转速关转子平衡技术要求的技术标准,如GB3215、API610、GB9239和ISO1940等。
3、转子做静平衡的条件在GB9239平衡标准中,对刚性转子做静平衡的条件定义为:⑴、如果盘状转子的支撑间距足够大并且旋转时盘状部位的轴向跳动很小,从而可忽略偶不平衡(动平衡),这时可用一个校正面校正不平衡即单面(静)平衡,对具体转子必须验证这些条件是否满足。
⑵、在对大量的某种类型的转子在一个平面上平衡后,就可求得最大的剩余偶不平衡量,并除以支撑距离。
⑶、如果在最不利的情况下这个值不大于许用剩余不平衡量的一半,则采用单面(静)平衡就足够了。
五、转子只做单面(静)平衡的条件主要有三个方面:1、一个是转子几何形状为盘状;2、一个是转子在平衡机上做平衡时的支撑间距要大;3、再一个是转子旋转时其校正面的端面跳动要很小。
对以上三个条件作如下说明:⑴、何谓盘状转子主要用转子的直径D与转子的两校正面间的距离尺寸b之比值来确定。
在API610标准中规定D/b<6时,转子只做单面平衡就可以了;D/b≥6时可以作为转子是否为盘状转子的条件规定,但不能绝对化,因为转子做何种平衡还要考虑转子的工作转速。
转子的动平衡和静平衡1、定义1)静平衡在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。
2)动平衡在转子两个校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定范围内,为动平衡又称双面平衡。
2、转子平衡的选择与确定如何选择转子的平衡方式,是一个关键问题。
其选择有这样一个原则:只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。
原因很简单,静平衡要比动平衡容易做,动平衡要比静动平衡容易做,省功、省力、省费用。
那么如何进行转子平衡型式的确定呢?需要从以下几个因素和依据来确定:1)转子的几何形状、结构尺寸,特别是转子的直径D与转子的两校正面间的距离尺寸b之比值,以及转子的支撑间距等。
2)转子的工作转速。
3)有关转子平衡技术要求的技术标准,如GB3215、API610第八版、GB9239和ISO1940等。
3、转子做静平衡的条件在GB9239-88平衡标准中,对刚性转子做静平衡的条件定义为:"如果盘状转子的支撑间距足够大并且旋转时盘状部位的轴向跳动很小,从而可忽略偶不平衡(动平衡),这时可用一个校正面校正不平衡即单面(静)平衡,对具体转子必须验证这些条件是否满足。
在对大量的某种类型的转子在一个平面上平衡后,就可求得最大的剩余偶不平衡量,并除以支撑距离。
如果在最不利的情况下这个值不大于许用剩余不平衡量的一半,则采用单面(静)平衡就足够了?quot;从这个定义中不难看出转子只做单面(静)平衡的条件主要有三个方面:一个是转子几何形状为盘状;一个是转子在平衡机上做平衡时的支撑间距要大;再一个是转子旋转时其校正面的端面跳动要很小。
对以上三个条件作如下说明:1)何谓盘状转子主要用转子的直径D与转子的两校正面间的距离尺寸b之比值来确定。
在API610第八版标准中规定D/b<6时,转子只做单面平衡就可以了;D/b≥6时可以作为转子是否为盘状转子的条件规定,但不能绝对化,因为转子做何种平衡还要考虑转子的工作转速。
风机动静平衡及找正方法-CAL-FENGHAI.-(YICAI)-Company One1转子找平衡一、静平衡与动平衡通风机转子的平衡校正,分为静平衡校正和动平衡校正两种。
一般的要求是:经过静平衡校正后,还须再作动平衡校正。
但对于符合某些条件的罢转子,也可仅作静平衡校正。
须作动平衡校正或仅作静平衡校正,取决于通风机的转速n,以及通风机叶片最大长度L与叶轮外圆直径D之比L/D的大小。
这种关系示于图5-8。
图中a线的下方为静平衡适用范围;b线的上方为动平衡适用范围;在a线和b线之间的区域,对于重要设备配套的通风机须作动平衡,对于一般通风机仅作静平衡即可。
必须指出,图中的规定只是概略值,实际上只要方法正确,在某些条件下以精密静平衡校正来代替动平衡校正,是可以取得良好的结果的。
例如,对于叶轮直径不大于0.6~1米,叶轮宽度小于直径一半的转子的动不平衡度是不大的,在检修中采用简单的动平衡校正方法,很难获得满意的结果,若作精密的静平衡校正,反可获得良好的结果。
作精密的静平衡校正时,是将叶轮、皮带轮等分别作平衡校正,如果通风机有两个叶轮,也分别作校正。
待全部校正部件装配后,再作最后一次的静平衡校正。
图5-8 静平衡与动平衡的分界??应该说明,在任何情况下进行平衡校正以前,必须先测量一下叶轮的径向跳动和端面跳动。
只有在跳动符合要求时,方可进行平衡校正工作。
通风机的许用不平衡度M(克力·厘米)是以所平衡的转子重量G(公斤力)和精密度ρ(微米)的乘积来表示的。
因此,许用不平衡度也叫做“重径积”。
这种关系如下式所示。
式中下角字母j表示静平衡,d表示动平衡。
例如,如时G=60公斤力,ρj=50微米则 M j=0.1X50X60=300克力·厘米通风机许用不平衡度的合理制定,需要考虑很多因素,一般都由通风机的设计者确定。
对于检修部门来说,如果没有通风机产品证明书所规定的数值,可参考图5-9,查得精密度ρ后,用公式(6-1)或公式(6-2)计算出许用不平衡度。
转子的动平衡和静平衡1、定义1)静平衡在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。
2)动平衡在转子两个校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定范围内,为动平衡又称双面平衡。
2、转子平衡的选择与确定如何选择转子的平衡方式,是一个关键问题。
其选择有这样一个原则:只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。
原因很简单,静平衡要比动平衡容易做,动平衡要比静动平衡容易做,省功、省力、省费用。
那么如何进行转子平衡型式的确定呢?需要从以下几个因素和依据来确定:1)转子的几何形状、结构尺寸,特别是转子的直径D与转子的两校正面间的距离尺寸b之比值,以及转子的支撑间距等。
2)转子的工作转速。
3)有关转子平衡技术要求的技术标准,如GB3215、API610第八版、GB9239和ISO1940等。
3、转子做静平衡的条件在GB9239-88平衡标准中,对刚性转子做静平衡的条件定义为:"如果盘状转子的支撑间距足够大并且旋转时盘状部位的轴向跳动很小,从而可忽略偶不平衡(动平衡),这时可用一个校正面校正不平衡即单面(静)平衡,对具体转子必须验证这些条件是否满足。
在对大量的某种类型的转子在一个平面上平衡后,就可求得最大的剩余偶不平衡量,并除以支撑距离。
如果在最不利的情况下这个值不大于许用剩余不平衡量的一半,则采用单面(静)平衡就足够了?quot;从这个定义中不难看出转子只做单面(静)平衡的条件主要有三个方面:一个是转子几何形状为盘状;一个是转子在平衡机上做平衡时的支撑间距要大;再一个是转子旋转时其校正面的端面跳动要很小。
对以上三个条件作如下说明:1)何谓盘状转子主要用转子的直径D与转子的两校正面间的距离尺寸b之比值来确定。
在API610第八版标准中规定D/b<6时,转子只做单面平衡就可以了;D/b≥6时可以作为转子是否为盘状转子的条件规定,但不能绝对化,因为转子做何种平衡还要考虑转子的工作转速。
转子找静平衡
1.找静平衡前,应按叶轮孔径选择一根专用静平衡假轴;2.清理导轨平衡架;
3.找正导轨平衡架纵、横向水平;
4.找显著静平衡:
4.1. 将转子放在平衡架上,轴与轨道垂直,转子在平衡架轨道上往复滚动数次,转子在滚动时,不平衡重量所在位置自然是垂直向下的,作好记号,如果转子停止的位置始终不变,也就是转子垂直向下这一半径位置几次试验都一样,它就是转子偏重的一侧,可以在转子上作出记号;
4.2. 在偏重的对侧(即停止时正好轴上方的半径上)试加重块,重块可以用橡皮泥、油灰,也可用橡皮泥、油灰加螺母,试加重块的重量根据反复试验确定,试加重块加上之后,会使转子转到任何位置都能停住;
4.3. 称出试加重块重量,此重量为显著不平衡重量;
4.4. 去不平衡重量,如是水泵叶轮,应在较重一侧减重量,可用铣床进行铣削,铣削的深度不要超过叶轮盖板厚度的1/3,铣削时可以从试加重块中心向二侧铣削,根据重块重量、铣刀直径、铣削深度、叶轮材质比重计算出弧长,划线进行铣削;
4.5. 如果铣削位置与测量的加重块位置不相同,可进行如下换算;
P1 =P×(r/r1)
式中:P1—铣削重量
r 1—铣削处的半径
P —测量时加重块的重量
r —测量时加重块的直径
4.6. 检验除去不平衡重量后的叶轮,重新作静平衡。
如仍有不平衡重量,重复步骤4.1.~4.4.
经平衡后,静平衡允许偏差数值近似为叶轮外径值乘以0.025克/毫米。
5.找剩余静不平衡:
5.1. 在叶轮上画一配重圆,在这个圆周上减少或增加重块应是比较方便的;
5.2. 将配重圆的圆周分八等分,按顺序在等分点上标上编号1、2、3、……8;
5.3. 先使1点和轴心共处于一条水平线上,并在1点试加配重,逐渐增加,直到转子失去平衡,并在导轨上开始滚动为止。
并把使转子开始失去平衡的重量记录下来。
其它各点都照样作一遍;
5.4. 把八个点所加重量的记录,用坐标的形势表示出来,如图所示:
5.5. 从曲线上找出最大配重W最大和最小配重W最小,从而计算出转子剩余静不平衡重量W余:
W余=1/2(W最大- W最小)g
5.6. 从曲线上找出配重圆上最大配重点的位置(它不一定是八等分点当中的一个点),就在这个位置上加平衡重量W余(或在叶轮对称处去除平衡重量W余),消除剩余静不平衡。