最新人卫版药剂学第七版 第十六章 固体分散体
- 格式:ppt
- 大小:1.25 MB
- 文档页数:38
固体分散体在药剂学中的应用一、引言随着药物研究的不断发展和药剂学技术的不断提升,固体分散体在药剂学中的应用愈发广泛。
固体分散体是将水敏感的药物或者活性成分通过分散技术与固体载体结合,以实现药物的稳定性和生物利用度的提高。
本文将对固体分散体在药剂学中的应用进行深入探讨。
二、固体分散体的制备方法1. 湿法制备:通过将药物与固体载体混合,并添加适量的溶剂,再通过搅拌、撞击、喷雾等方式将药物均匀地分散在固体载体中。
2. 干法制备:采用粉碎、磨碎、搅拌等方法,将药物与固体载体直接混合均匀,制备成固体分散体。
3. 融熔法制备:通过将药物和固体载体一起加热并混合,使其在高温下相互融合形成固态分散体。
三、固体分散体的应用1. 提高药物的生物利用度固体分散体可以提高药物的溶解度和稳定性,从而增加药物在体内的吸收速度和生物利用度。
尤其是一些难溶性药物,通过制备成固体分散体,可以大大提高其口服药物的吸收率。
贝拉米特(Belamint)是一种难溶性药物,制备成固体分散体后,可以明显提高其生物利用度,使得患者在服用药物后能更快的达到治疗效果。
2. 控释药物释放将药物与固体载体制备成固体分散体后,可以有效地控制药物的释放速度和释放时间,使得药物在体内的作用更加持久和稳定。
这对于长效药物来说尤为重要。
通过将镁固体分散体与药物结合,可以制备成长效缓释药物,使得患者可以减少服药频次,提高治疗依从性。
3. 降低药物毒性一些药物本身有一定的毒性,通过将其制备成固体分散体,可以降低其对组织的刺激性和毒性,从而提高药物的安全性和耐受性。
某些抗癌药物在固体分散体中的应用可以降低其对消化道的损伤,减轻患者的不良反应。
四、固体分散体的应用前景随着制备技术的不断改进和药学研究的深入,固体分散体在药剂学中的应用前景十分广阔。
其应用将会有助于提高难溶性药物的可溶性和生物利用度、实现控释药物的长效作用、降低毒性药物的毒性等。
固体分散体制备技术的进步也将为制备更多种类的分散体提供有力支持,包括纳米分散体、微粒分散体等,这将进一步拓宽药物的应用范围。
药剂学试题及答案第十六章制剂新技术一、单项选择题【A型题】1.β-环糊精与挥发油制成的固体粉末为()A.固体分散体B.包合物C.脂质体D. 微球E.物理混合物2.β-环糊精在药学上比α-环糊精或γ-环糊精更为常用的原因是()A.水中溶解度最大B.水中溶解度最小C.形成的空洞最大D.分子量最小 E.包容性最大3.固体分散体中药物溶出速度快慢顺序正确的是()A、无定型>微晶态>分子状态B、分子状态>微晶态>无定形C、微晶态>分子状态>无定形D、分子状态>无定形>微晶态E、微晶态>无定形>分子状态4.下列哪种材料制备的固体分散体具有缓释作用()A.PEGB.PVPC.ECD.胆酸E.泊洛沙姆1885.固体分散物存在的主要问题是()A.久贮不够稳定B.药物高度分散C.药物的难溶性得不到改善D.不能提高药物的生物利用度E.刺激性增大6.下列高分子囊材中,属于天然高分子材料的是()A.阿拉伯胶B.醋酸纤维素酞酸酯C.乙基纤维素D.聚酰胺E.聚乳酸7.下列合成高分子囊材中,可生物降解的是()A.聚酰胺B.硅橡胶C.聚丙烯酸树脂D.聚乙烯醇E.聚乳酸8.下列合成高分子囊材中,不可生物降解却可以在一定pH值条件下溶解的为()A.聚酰胺B.硅橡胶C.聚乳酸D.乙交酯丙交酯共聚物E.聚丙烯酸树脂9.下列用于制备微囊的囊材中,属于两性高分子电解质的是()A.壳聚糖B.海藻酸盐C.聚赖氨酸盐D.明胶E.羧甲基纤维素10.下列概念表述不正确的是()A.物理化学法制备微囊的过程在液相中进行,系在囊材或囊心物的混合溶剂中加入另一种物质或不良溶剂,或采用适当的方法使囊材溶解度降低而凝聚,并包裹在囊芯周围形成一个相,从液相中析出,故称之为相分离法。
B.单凝聚法是在高分子囊材溶液中加入凝聚剂,使囊材溶解度降低而凝聚并包裹药物成囊的方法。
由于其凝聚过程一般是可逆的,故要加入交联固化剂以使其不可逆。
固体分散体的概述作者介绍:陈艳红,解放军总医院,副主任医师,发表数篇论文。
固体分散体(SD)是指将药物高度分散于固体载体中形成的一种以固体形式存在的分散系统。
难溶性药物通常是以分子、胶态、微晶或无定形状态分散于另一种水溶性、或难溶性、或肠溶性材料中形成固体分散体。
制备固体分散体的方法叫做固体分散技术。
固体分散技术主要是通过微粉化、固体分散体和粉状溶液或溶剂沉积等技术达到高度分散,从而提高药物制剂生物利用度的技术。
60年代初,Sekiguchi 和Obi[1]第一次用水溶性高分子化合物与难溶性药物采用溶剂法制备固体分散体而改变了难溶性药物的水溶性和生物利用度后,这一技术已成为改变难溶性药物溶解性能、制备高效、速效制剂的一种重要方法。
它解决了许多药物因溶解度小、吸收少而生物利用度低的问题,避免了成盐、增溶、粒径减少、多晶型或溶剂化物等方法存在的局限。
固体分散体的作用特点:增加难溶性药物的溶解度和溶出速率;如:以PEG20000为载体制备的阿司匹林-PEG20000(1∶9)固体分散体,其药物溶出速度显著高于原料药及物理混合物;延缓释药速度,如:以肠溶性材料为载体、用溶剂法制备的硝苯吡啶固体分散体就具有较好的缓释作用;提高难溶性药物的生物利用度,难溶性药物因不易被机体吸收,在临床应用上受到了一定限制。
采用固体分散体技术,可使之达到高度分散均相状态,从而保证所制成的制剂的吸收与利用;提高药物的稳定性,不稳定药物制成固体分散体,其稳定性增加,制剂的质量易于控制,并可降低成本。
固体分散体的制备方法:熔融法,用药物和载体的低共熔物以降低熔融温度,熔融后,下一个关键步骤就是固化,以便能粉碎制成适宜的剂型,Sekiguchi和Obi将磺胺噻唑—尿素熔融物置于冰浴中,并剧烈搅拌使其固化。
本法简便、经济,适用于对热稳定的药物,多用于熔点低,不溶于有机溶剂的载体材料;溶剂法(又称共沉淀法或共蒸发法),将药物与载体溶于一种共同的有机溶剂,然后,将有机溶剂蒸去后使药物与载体材料同时析出,却可得到药物在载体材料中混合而成的共沉淀固体分散体,经干燥即得。